Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
31 January 2019 | Story Leonie Bolleurs | Photo Earl Slipher
Mars
One of the first colour photographs of Mars, taken through the lens of the Lamont-Hussey telescope in 1939. The telescope was restored and is currently on display at the Naval Hill Planetarium.

In 2018 the University of the Free State (UFS) launched the historic 27-inch Lamont-Hussey Refractor telescope exhibit together with the completed observation platform and a garden in front of the Naval Hill Planetarium in Bloemfontein.

The re-installation of the telescope as a static outdoor exhibition at Naval Hill is now complete. The project started several years ago after the recovery of abandoned parts of the old telescope. What followed was a story of trial, patience, careful planning and a lot of hard work.

 

Taking it apart

According to Dawid van Jaarsveld from the UFS Department of Physics, the mounting and tube of the Lamont telescope has returned to its home, the Lamont-Hussey Observatory, for display. The telescope had 47 years of service and years of abandonment in the veld after it was taken apart in 1975.

Its former telescope dome now hosts the Naval Hill Planetarium, the first digital planetarium in Sub-Saharan Africa.

The telescope was taken apart after the observatory was closed in 1974. It was dismantled and the optics were sent back to the University of Michigan with the largest pieces “left for dead in the veld” on the grounds of the Ehrlichpark Fire Station.

According to Dr Hendrik van Heerden from the UFS Department of Physics, who assisted in the technical side of re-installing the telescope, the larger pieces were recovered by Braam van Zyl and subsequently moved into the museum hanger of the Bloemfontein Fire Brigade where they stayed for many years.

 

Contribution to science

The University of Michigan in the US built the Lamont-Hussey Observatory between 1926 and 1928 in Bloemfontein for the study of double stars. The telescope had great historic significance and was used by professional astronomer RA Rossiter from Michigan, who set the record for discovering and measuring more than 5 000 double stars. The planetarium also measured the most double stars in the world, more than 7 000.

Van Jaarsveld describes a double star – also known as a binary star system – as two stars orbiting around one another. Studies of double stars enable researchers to determine the mass of stars.

Earl Slipher used the telescope to take one of the very first colour photographs of Mars in 1939. Slipher took 60 000 photos of Mars in 1939, 1954 and 1956 with the telescope. He was the world expert on the planet at the time. The camera Slipher used is displayed in the Boyden Observatory museum just outside Bloemfontein.

 

Putting it together

Van Heerden continues: “In early 2017 the components [of the telescope] were relocated to Dukoc Manufacturing in Bloemfontein for cleaning, treatment and painting. It took a while, as the missing components had to be manufactured before the final painting could be completed. The missing pieces were made with the help of the original blueprints of the telescope, provided by Prof Patrick Seitzer of the University of Michigan.

“These blueprints, along with measurements taken from the cleaned parts at Dukoc Manufacturing were used by Barend Crous, UFS Head of Instrumentation, to develop and manufacture the missing parts. These include the polar axis (solid steel axle over 3 m long and weighing more than one ton), axis-bearing caps (cast-iron pieces weighing more than 100 kg and 200 kg respectively) and telescope position wheels and gear works. After the required components were manufactured and refurbished, they were relocated to the Naval Hill Planetarium for the launch ceremony which was held on 5 June 2018.

“Planning of the installation of the telescope thereafter started in earnest. The jigsaw had to be put together again. The sheer size of the parts required some heavy equipment during the installation. With hard work, good coordination and a bit of luck, a team consisting of myself as project coordinator and consultant, Barend Crous, site engineer; Innes Basson, supervisor; Denver de Koker, handyman; and Wikus Storm, welder, got the job done,” Dr Van Heerden said.

 

Information sessions

Astronomy enthusiasts, tourists, school groups and other members of the public can now visit the Lamont-Hussey telescope with it finally back home after many years of neglect and abandonment in the veld. It can again hold itself high, looking at the stars.

The official opening of the telescope will take place on 26 April 2019 and Prof Seitzer from the University of Michigan will attend the opening event.

The refurbishment of the old telescope and the establishment of the new garden and observing platform were made possible by a R1 million donation by ArcelorMittal.

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept