Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
31 January 2019 | Story Leonie Bolleurs | Photo Earl Slipher
Mars
One of the first colour photographs of Mars, taken through the lens of the Lamont-Hussey telescope in 1939. The telescope was restored and is currently on display at the Naval Hill Planetarium.

In 2018 the University of the Free State (UFS) launched the historic 27-inch Lamont-Hussey Refractor telescope exhibit together with the completed observation platform and a garden in front of the Naval Hill Planetarium in Bloemfontein.

The re-installation of the telescope as a static outdoor exhibition at Naval Hill is now complete. The project started several years ago after the recovery of abandoned parts of the old telescope. What followed was a story of trial, patience, careful planning and a lot of hard work.

 

Taking it apart

According to Dawid van Jaarsveld from the UFS Department of Physics, the mounting and tube of the Lamont telescope has returned to its home, the Lamont-Hussey Observatory, for display. The telescope had 47 years of service and years of abandonment in the veld after it was taken apart in 1975.

Its former telescope dome now hosts the Naval Hill Planetarium, the first digital planetarium in Sub-Saharan Africa.

The telescope was taken apart after the observatory was closed in 1974. It was dismantled and the optics were sent back to the University of Michigan with the largest pieces “left for dead in the veld” on the grounds of the Ehrlichpark Fire Station.

According to Dr Hendrik van Heerden from the UFS Department of Physics, who assisted in the technical side of re-installing the telescope, the larger pieces were recovered by Braam van Zyl and subsequently moved into the museum hanger of the Bloemfontein Fire Brigade where they stayed for many years.

 

Contribution to science

The University of Michigan in the US built the Lamont-Hussey Observatory between 1926 and 1928 in Bloemfontein for the study of double stars. The telescope had great historic significance and was used by professional astronomer RA Rossiter from Michigan, who set the record for discovering and measuring more than 5 000 double stars. The planetarium also measured the most double stars in the world, more than 7 000.

Van Jaarsveld describes a double star – also known as a binary star system – as two stars orbiting around one another. Studies of double stars enable researchers to determine the mass of stars.

Earl Slipher used the telescope to take one of the very first colour photographs of Mars in 1939. Slipher took 60 000 photos of Mars in 1939, 1954 and 1956 with the telescope. He was the world expert on the planet at the time. The camera Slipher used is displayed in the Boyden Observatory museum just outside Bloemfontein.

 

Putting it together

Van Heerden continues: “In early 2017 the components [of the telescope] were relocated to Dukoc Manufacturing in Bloemfontein for cleaning, treatment and painting. It took a while, as the missing components had to be manufactured before the final painting could be completed. The missing pieces were made with the help of the original blueprints of the telescope, provided by Prof Patrick Seitzer of the University of Michigan.

“These blueprints, along with measurements taken from the cleaned parts at Dukoc Manufacturing were used by Barend Crous, UFS Head of Instrumentation, to develop and manufacture the missing parts. These include the polar axis (solid steel axle over 3 m long and weighing more than one ton), axis-bearing caps (cast-iron pieces weighing more than 100 kg and 200 kg respectively) and telescope position wheels and gear works. After the required components were manufactured and refurbished, they were relocated to the Naval Hill Planetarium for the launch ceremony which was held on 5 June 2018.

“Planning of the installation of the telescope thereafter started in earnest. The jigsaw had to be put together again. The sheer size of the parts required some heavy equipment during the installation. With hard work, good coordination and a bit of luck, a team consisting of myself as project coordinator and consultant, Barend Crous, site engineer; Innes Basson, supervisor; Denver de Koker, handyman; and Wikus Storm, welder, got the job done,” Dr Van Heerden said.

 

Information sessions

Astronomy enthusiasts, tourists, school groups and other members of the public can now visit the Lamont-Hussey telescope with it finally back home after many years of neglect and abandonment in the veld. It can again hold itself high, looking at the stars.

The official opening of the telescope will take place on 26 April 2019 and Prof Seitzer from the University of Michigan will attend the opening event.

The refurbishment of the old telescope and the establishment of the new garden and observing platform were made possible by a R1 million donation by ArcelorMittal.

News Archive

Water erosion research help determine future of dams
2017-03-07

Description: Dr Jay le Roux Tags: Dr Jay le Roux

Dr Jay le Roux, one of 31 new NRF-rated
researchers at the University of the Free State,
aims for a higher rating from the NRF.
Photo: Rulanzen Martin

“This rating will motivate me to do more research, to improve outcomes, and to aim for a higher C-rating.” This was the response of Dr Jay le Roux, who was recently graded as an Y2-rated researcher by the National Research Foundation (NRF).

Dr Le Roux, senior lecturer in the Department of Geography at the University of the Free State (UFS), is one of 31 new NRF-rated researchers at the UFS. “This grading will make it possible to focus on more specific research during field research and to come in contact with other experts. Researchers are graded on their potential or contribution in their respective fields,” he said.

Research assess different techniques
His research on water erosion risk in South Africa (SA) is a methodological framework with three hierarchal levels presented. It was done in collaboration with the University of Pretoria (UP), Water Research Commission, Department of Agriculture, Forestry and Fisheries, and recently Rhodes University and the Department of Environmental Affairs. Dr Le Roux was registered for 5 years at UP, while working full-time for the Agricultural Research Council – Institute for Soil, Climate and Water (ARC-ISCW).

Water erosion risk assessment in South Africa: towards a methodological framework
, illustrates the most feasible erosion assessment techniques and input datasets that can be used to map water erosion features in SA. It also emphasises the simplicity required for application at a regional scale, with proper incorporation of the most important erosion-causal factors.

The main feature that distinguishes this approach from previous studies is the fact that this study interprets erosion features as individual sediment sources. Modelling the sediment yield contribution from gully erosion (also known as dongas) with emphasis on connectivity and sediment transport, can be considered as an important step towards the assessment of sediment produce at regional scale. 
 
Dams a pivotal element in river networks

Soil is an important, but limited natural resource in SA. Soil erosion not only involves loss of fertile topsoil and reduction of soil productivity, but is also coupled with serious off-site impacts related to increased mobilisation of sediment and delivery to rivers.

The siltation of dams is a big problem in SA, especially dams that are located in eroded catchment areas. Dr Le Roux recently developed a model to assess sediment yield contribution from gully erosion at a large catchment scale. “The Mzimvubu River Catchment is the only large river network in SA on record without a dam.” The flow and sediment yield in the catchment made it possible to estimate dam life expectancies on between 43 and 55 years for future dams in the area.
 
Future model to assess soil erosion
“I plan to finalise a soil erosion model that will determine the sediment yield of gully erosion on a bigger scale.” It will be useful to determine the lifespan of dams where gully erosion is a big problem. Two of his PhD students are currently working on project proposals to assess soil erosion with the help of remote sensing techniques.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept