Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 January 2019 | Story Charlene Stanley | Photo Anja Aucamp
Dr Allessandra Kim Heggenstaller
Dr Allessandra Kim Heggenstaller’s doctoral thesis found that cosmetic surgery can lead to an enhanced sense of empowerment.

With human rights at the centre of our modern society’s psyche, the concept of women taking ownership of their own bodies is often interpreted as standing up against all forms of abuse as well as celebrating their own physical uniqueness.

But what about the interpretation that ownership also gives you the right to alter your physical appearance through cosmetic surgery?

The stigma traditionally surrounding cosmetic surgery which is purely done to correct a perceived physical flaw or shortcoming and not for health reasons, has always intrigued Alessandra Kim Heggenstaller. So much so, that the 31-year-old Sociology graduate made it the topic of her doctoral thesis (The role of cosmetic surgery in the embodied experience of female beauty).

 

Beauty and success

“Nowadays, the concept of human ‘beauty’ is intricately linked to that of identity: beauty is seen as

bringing success in occupation, love, and marriage. Accordingly, beauty is often treated as a commodity – social status is attributed to it, and negotiated with it,” says Heggenstaller.

She wanted to test the prevailing negative perception that women who opt for corrective surgery are vain and superficial and are motivated by their desire to fit into a stereotype of ‘the perfect female body’.

 

Surgery a last resort

In her research, Heggenstaller interviewed 10 Free State women who had cosmetic interventions.

The women were from various ages and backgrounds. However, Heggenstaller found certain commonalities:

“None of them did it for a male partner or to fit a perceived stereotype. All of them had done intensive research beforehand and for each of them surgery was really a last resort,” she says.

She found that the women’s main motivation was that they didn’t ‘feel at home’ in their own

bodies because of the perceived shortcoming.

“The study found that a cosmetic procedure was an action and choice that began a journey of change and self-discovery. When the physical body portrays a more accurate image of how the individual feels, she engages her lifeworld and social environment with an enhanced sense of empowerment,” says Heggenstaller.

 

No regrets

“It was also significant to hear that not one of my case studies had any regrets about opting for surgery. In fact, they all felt that they should have done it sooner.”

News Archive

UFS boasts with most advanced chemical research apparatus in Africa
2005-11-23

Celebrating the inauguration of the NMR were from the left Prof Frederick Fourie (Rector and Vice-Chancellor of the UFS),  Dr Detlef Müller (Development Scientist and Manager:  Africa and Asia of Bruker in Germany, the supplier of the NMR), Prof Jannie Swarts (head of the head of the Division Physical Chemistry at the UFS) and Prof Herman van Schalkwyk (Dean:  Faculty of Natural and Agricultural Sciences at the UFS). Photo: Lacea Loader

UFS boasts with most advanced chemical research apparatus in Africa 

The University of the Free State’s (UFS) Department of Chemistry now boasts with some of the most advanced chemical research apparatus in Africa after the latest addition, a nuclear magnetic resonance (NMR) spectrometer, was inaugurated today by the Rector and Vice-Chancellor, Prof Frederick Fourie.  The NMR is used to analyse molecular structures. 

Last month the Department of Chemistry celebrated the installation of the most advanced single crystal X-ray diffractometer in Africa.  The diffractometer provides an indispensable technique to investigate among others the solid state of compounds for medicinal application.

“Three years ago the UFS executive management realised that, if we want to build a university of excellence, we should invest in research.  We started to think strategically about chemistry and decided to bring the apparatus at the Department of Chemistry on a more competitive standard.  Strategic partnerships were therefore secured with companies like Sasol,” said Prof Fourie during the inauguration ceremony.

“The installation of the NMR symbolises the ability of the UFS to turn academic areas around.  I hope that this is the beginning of a decade of excellence for chemistry at the UFS,” said Prof Fourie.

”The catalogue value of the Bruker 600 MHz NMR is approximately R11 million.  With such an advanced apparatus we are now able to train much more post-graduate students,“ said Prof Jannie Swarts, head of the Division Physical Chemistry at the UFS.

”The NMR is the flagship apparatus of the UFS Department of Chemistry that enables chemists to look at compounds more easily at a molecular level.  Research in chemistry is critically dependent on NMR, which is a technique that can determine the composition of reactants and products in complicated chemical reactions, with direct application is most focus areas in chemistry,“ said Prof Swarts.

”Parts of the spectrometer consists of non-commercial items that were specifically designed for the UFS Department of Chemistry to allow the study of unique interactions in e.g. rhodium and platinum compounds,” said Prof Swarts.

According to Prof Swarts the NMR enables chemists to conduct investigations on the following:

To evaluate for example the complex behaviour of DNA in proteins as well as the analysis of illegal drugs sometimes used by athletes. 
It provides an indispensable technique to investigate compounds for medicinal application for example in breast, prostate and related bone cancer identification and therapy, which are currently synthesised in the Department of Chemistry.  
It can also be applied to the area of homogeneous catalysis where new and improved compounds for industrial application are synthesized and characterised, whereby Sasol and even the international petrochemical industry could benefit. This analytical capacity is highly rated, especially in the current climate of increased oil prices.
The NMR can detect and identify small concentrations of impurities in feed streams in the petrochemical industry, e.g. at Sasol and also the international petrochemical industry.  These minute amounts of impurities can result in metal catalyst deactivation or decomposition and can cause million of rands worth in product losses.
It is indispensable for studying the complexity of samples that is non-crystalline. These materials represent the vast majority of chemical compounds such as solvents, gasoline, cooking oil, cleaning agents and colorants as examples. 

According to Prof Swarts the general medical technique of MRI (magnetic resonance imaging) in use at larger hospitals, is based on NMR technology.

”The NMR apparatus enabled the Department of Chemistry to characterise complex molecules that were synthesised for the multi-national company, FARMOFS-PAREXEL, and to negotiate research agreements with overseas universities,” said Prof Swarts. 

Media release
Issued by: Lacea Loader
Media Representative
Tel:  (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za
22 November 2005
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept