Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 June 2019 | Story Ruan Bruwer | Photo BackpagePix
Lefébre Rademan
Lefébre Rademan, wing attack and goal attack, received seven Player of the Match awards in her last 17 matches for the Free State and the University of the Free State.

While she had an outstanding Telkom Netball League and was recognised as one of the best players, Lefébre Rademan is keen to take her game to the next level.

The 22-year-old BEd honours student at the University of the Free State captained the Free State Crinums to the third position in the league, and was named as the best shooter. Her 201 goals from 235 attempts (86% goal average) was the second highest by any shooter with more than 100 attempts.

Rademan’s four Player of the Match awards was the joint most. This followed last year’s Varsity Netball tournament where she also finished with the joint most awards for the best player in a fixture.

“Yes, I would say this has been the best form of my career. But I believe I can take it a step further. Reaching this form is something that comes over time with hard work.” 

Rotating between positions

What impressed about the South African A (2018) and SA U21 (2016 and 2017) player, was how she adapted when she was rotated between wing attack and goal attack during matches.

Although the majority of her career was as a defender (school) and wing attack (post school), goal attack was a position she always thought she would like. 

“In my first year, I used to nag our coach (Burta de Kock) to give me some playing time there. It is funny how it worked out, as I’m now playing mostly goal attack.”

She still hopes to win a couple of trophies with the Kovsie and Free State teams and said she will give her ‘absolute all’ to make the Protea team.

According to De Kock, Rademan is a hard worker with a never-give-up approach. “I can play her anywhere and she won’t let anyone down. Lefébre never takes praise for herself. She sets the example on and off court.”

News Archive

Mathematical methods used to detect and classify breast cancer masses
2016-08-10

Description: Breast lesions Tags: Breast lesions

Examples of Acho’s breast mass
segmentation identification

Breast cancer is the leading cause of female mortality in developing countries. According to the World Health Organization (WHO), the low survival rates in developing countries are mainly due to the lack of early detection and adequate diagnosis programs.

Seeing the picture more clearly

Susan Acho from the University of the Free State’s Department of Medical Physics, breast cancer research focuses on using mathematical methods to delineate and classify breast masses. Advancements in medical research have led to remarkable progress in breast cancer detection, however, according to Acho, the methods of diagnosis currently available commercially, lack a detailed finesse in accurately identifying the boundaries of breast mass lesions.

Inspiration drawn from pioneer

Drawing inspiration from the Mammography Computer Aided Diagnosis Development and Implementation (CAADI) project, which was the brainchild Prof William Rae, Head of the department of Medical Physics, Acho’s MMedSc thesis titled ‘Segmentation and Quantitative Characterisation of Breast Masses Imaged using Digital Mammography’ investigates classical segmentation algorithms, texture features and classification of breast masses in mammography. It is a rare research topic in South Africa.

 Characterisation of breast masses, involves delineating and analysing the breast mass region on a mammogram in order to determine its shape, margin and texture composition. Computer-aided diagnosis (CAD) program detects the outline of the mass lesion, and uses this information together with its texture features to determine the clinical traits of the mass. CAD programs mark suspicious areas for second look or areas on a mammogram that the radiologist might have overlooked. It can act as an independent double reader of a mammogram in institutions where there is a shortage of trained mammogram readers. 

Light at the end of the tunnel

Breast cancer is one of the most common malignancies among females in South Africa. “The challenge is being able to apply these mathematical methods in the medical field to help find solutions to specific medical problems, and that’s what I hope my research will do,” she says.

By using mathematics, physics and digital imaging to understand breast masses on mammograms, her research bridges the gap between these fields to provide algorithms which are applicable in medical image interpretation.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept