Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 June 2019 | Story Charlene Stanley | Photo Charl Devenish
4IR Prof Marwala
Prof Tshilidzi Marwala, Vice-Chancellor and Principal of the University of Johannesburg and speaker at the first UFS public event on 4IR awareness (middle), with Prof Corli Witthuhn, UFS Vice-Rector: Research (left), and Tafadza Kachara, member of the UFS 4IR committee.

A computer programmed to play poker and learning by itself how to bluff; an algorithm that predicts whether two countries will ever go to war; machines that detect epilepsy with almost flawless accuracy these are some of the groundbreaking abilities brought about by technologies associated with the Fourth Industrial Revolution (4IR).

Addressing the first UFS public event to enhance 4IR awareness, Professor Tshilidzi Marwala, Vice-Chancellor and Principal of the University of Johannesburg, briefed staff, interested parties and members of the media about recent 4IR developments and their implications.

Prof Marwala is currently a thought leader on the impact of the 4IR on higher education in South Africa as well as the Deputy Chairperson of the national commission appointed by the president to formulate 4IR strategies for South Africa.

Industrial revolution history

He recapped how, during the first industrial revolution, people started to understand how nature worked, ultimately leading to the development of the steam engine.
The second industrial revolution was marked by the development of electromagnetism which led to electrification and mass production, while the third produced computerisation and a rise in digital technology. 

The fourth industrial revolution is characterised by a fusion of technologies that blur the lines between cyber, physical and biological systems. This has led to rapid advances in fields such as artificial intelligence, quantum computing and 3D printing.


Artificial intelligence

Prof Marwala pointed out that, although fears were rife of machines taking over people’s jobs, the flipside of the coin was that dangerous jobs such as fire rescue operations could be carried out by machines without endangering lives.

Artificial intelligence can be employed to prevent bridge and building collapses by monitoring the condition of structures. It can also be used in credit scoring, where machines search for and analyse all the available data on a credit applicant, without having to rely only on the (sometimes fraudulent) information supplied by the credit seeker. 

He emphasised the great need to develop algorithms applicable to our continent, such as translating software that makes provision for the clicks in languages like isiXhosa, and facial recognition software that incorporates data collected in African countries. 


Is Africa ready? 

Responding to a question from an audience member, Prof Marwala indicated that Africa was certainly not ready for the 4IR when it came to the content of teaching curricula and infrastructure.

“As universities, we should not sit back and wait for change. We have the responsibility to lead our societies to have the same experiences as elsewhere in the world,” he concluded.

News Archive

UFS study on cell development in top international science journal
2008-09-16

A study from the University of the Free State (UFS) on how the change in the packaging of DNA with cell development influenced the expression of genes, will be published in this week’s early edition of the prestigious international, peer-reviewed science journal, the Proceeding of the National Academy of Sciences of the USA (PNAS).

The PNAS journal has an impact factor of 10, which means that studies published in the journal are, on average, referred to by ten other scientific studies in a two year period. The South African Journal of Science, by comparison, has an impact factor of 0.7.

The UFS study, funded by the Wellcome Trust and the National Research Foundation (NRF), looked at how the change in the packaging of DNA with cell development influenced the expression of genes. It is very relevant to research on stem cells, an area of medicine that studies the possible use of undifferentiated cells to replace damaged tissue.

Prof. Hugh Patterton, of the Department of Microbial, Biochemical and Food Biotechnology at the UFS, who led the study, said: "We are extremely proud of this study. It was conceived in South Africa, it was performed in South Africa, the data were analysed in South Africa, and it was published from South Africa."

When a gene is expressed, the information encoded in the gene is used to manufacture a specific protein. In eukaryotes, which include humans, there is approximately 1m of DNA, containing the genes, in every cell. This length of DNA has to fit into a cell nucleus with a diameter of only about 10 micrometer. In order to fit the DNA into such a small volume, eukaryotic cells wrap their DNA onto successive protein balls, termed nucleosomes. Strings of nucleosomes, resembling a bead of pearls, is folded into a helix to form a chromatin fiber. The study from the UFS investigated how the binding of a specific protein, termed a linker histone, that binds to the length of DNA between nucleosomes, influenced the formation of the chromatin fiber and also the activity of genes.

"We found that the linker histone bound to chromatin in yeast, which we use as a model eukaryote, under conditions where virtually all the genes in the organism were inactive. It was widely believed that the binding of the linker histone caused the inactivation of genes. We studied the relationship between the amount of linker histone bound in the vicinity of each gene and the expression of that gene for all the genes in yeast, using genomic techniques. We made the surprising discovery that even through the linker histone preferentially bound to genes under conditions where the genes were shut off, this inactivation of genes was not caused by the binding of the linker histone and folding of the chromatin,” said Prof. Patterton.

He said: “Instead our data strongly suggested that the observed anti-correlation was due to the movement of enzymes along the DNA molecule, involved in processing the information in genes for the eventual manufacture of proteins. This movement of enzymes displaced the linker histones from the DNA. This finding now requires a rethink on aspects of how packaging of DNA influences gene activity."

Prof. Patterton said that his research group, using the Facility for Genomics and Proteomics as well as the Bioinformatics Node at the UFS, was currently busy with follow-up studies to understand how other proteins in nucleosomes affected the activities of genes, as well as with projects to understand how chemicals found in red wine and in green tea extended lifespan. "We are certainly having a marvelous time trying to understand the fundamental mechanisms of life, and the UFS is an exciting place to be if one was interested in studying life at the level of molecules," he said.


Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
18 September 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept