Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 June 2019 | Story Charlene Stanley | Photo Charl Devenish
4IR Prof Marwala
Prof Tshilidzi Marwala, Vice-Chancellor and Principal of the University of Johannesburg and speaker at the first UFS public event on 4IR awareness (middle), with Prof Corli Witthuhn, UFS Vice-Rector: Research (left), and Tafadza Kachara, member of the UFS 4IR committee.

A computer programmed to play poker and learning by itself how to bluff; an algorithm that predicts whether two countries will ever go to war; machines that detect epilepsy with almost flawless accuracy these are some of the groundbreaking abilities brought about by technologies associated with the Fourth Industrial Revolution (4IR).

Addressing the first UFS public event to enhance 4IR awareness, Professor Tshilidzi Marwala, Vice-Chancellor and Principal of the University of Johannesburg, briefed staff, interested parties and members of the media about recent 4IR developments and their implications.

Prof Marwala is currently a thought leader on the impact of the 4IR on higher education in South Africa as well as the Deputy Chairperson of the national commission appointed by the president to formulate 4IR strategies for South Africa.

Industrial revolution history

He recapped how, during the first industrial revolution, people started to understand how nature worked, ultimately leading to the development of the steam engine.
The second industrial revolution was marked by the development of electromagnetism which led to electrification and mass production, while the third produced computerisation and a rise in digital technology. 

The fourth industrial revolution is characterised by a fusion of technologies that blur the lines between cyber, physical and biological systems. This has led to rapid advances in fields such as artificial intelligence, quantum computing and 3D printing.


Artificial intelligence

Prof Marwala pointed out that, although fears were rife of machines taking over people’s jobs, the flipside of the coin was that dangerous jobs such as fire rescue operations could be carried out by machines without endangering lives.

Artificial intelligence can be employed to prevent bridge and building collapses by monitoring the condition of structures. It can also be used in credit scoring, where machines search for and analyse all the available data on a credit applicant, without having to rely only on the (sometimes fraudulent) information supplied by the credit seeker. 

He emphasised the great need to develop algorithms applicable to our continent, such as translating software that makes provision for the clicks in languages like isiXhosa, and facial recognition software that incorporates data collected in African countries. 


Is Africa ready? 

Responding to a question from an audience member, Prof Marwala indicated that Africa was certainly not ready for the 4IR when it came to the content of teaching curricula and infrastructure.

“As universities, we should not sit back and wait for change. We have the responsibility to lead our societies to have the same experiences as elsewhere in the world,” he concluded.

News Archive

Chemistry research group receives international recognition
2016-10-28

Description: Chemistry research group  Tags: Chemistry research group

Dr Carla Pretorius mounts microcrystals with
Dumisani Kama while Pennie Mokolokolo
observe the technique.
Photo: Supplied


Crystals and crystallography form an integrated part of our daily lives, from bones and teeth, to medicines and viruses, new catalysts, jewellery, colour pigments, chocolates, analysing rocks on the moon and Mars, electronics, batteries, metal blades in airplane turbines, panels for solar energy and many more.

In spite of this, not many people know much about X-ray crystallography, although it is probably one of the greatest innovations of the 20th century, spanning the sciences. That is why this discipline is actively researched by a number of tertiary institutions around the globe as well as the Inorganic Chemistry Group of the Department of Chemistry at the University of the Free State (UFS).

Research by the Inorganic Chemistry Group includes:
•    clever design of model medicines to better detect cancer and study heart, bone and brain defects;
•    production of new compounds for making new and better automobile fuels and decrease carbon dioxide in the atmosphere;
•    generation and purification of new South African mineral resources for metals widely used in turbines which use wind energy.

A group of UFS students have received acknowledgement for their research at six international venues in the past few months.

Posters in Cameroon
Twelve postgraduate students, together with Prof André Roodt, Head of the Inorganic Chemistry division at the UFS, delivered three oral presentations, nine posters, one plenary and one keynote lecture abroad.

Four UFS students - Nina Morogoa, Pheello Nkoe, Alebel Bilay, and Mohammed Elmakki - who delivered posters at the First Pan African Conference on Crystallography in Dschang, Cameroon, received prizes for their presentations.

School and conference in Croatia

Students Orbett Alexander and Dumisani Kama were selected to attend the intense and demanding Third European Crystallographic School in Bôl, Croatia. Both Kama, Alexander and Prof Roodt gave oral presentations at the 24th Croatian-Slovenian Crystallographic Meeting at Brac Island, Croatia.

Kama, together with Dr Ferdi Groenewald, Dr Carla Pretorius and Pennie Mokolokolo, also attended the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. The ESRF is a centre of excellence for fundamental and innovation-driven research. The storage ring at this laser facility can generate X-rays 100 billion times brighter than typical medical and laboratory X-ray sources.

Research in Switzerland

Kama and Mokolokolo also spent one month on research visits at the University of Zurich in Switzerland. Both Kama and Alexander were invited to present their research orally to the Institute of Inorganic Chemistry in Zurich, headed by Prof Roger Alberto.

In Basel, Switzerland, Dr Ferdi Groenewald, Dr Renier Koen, and Dr Truidie Venter all presented their research at the 30th European Crystallographic Meeting.

Prof Roodt said: “It is incredibly important that our postgraduate students get the chance to interact, discuss, and be taught by the best in the world and realise that hard work on basic and applied chemistry processes leads to broader recognition. The delegates to these international venues came from more than 60 countries and took note of our students work. With these young researchers, our future at the UFS and at Inorganic Chemistry is in good hands”.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept