Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 June 2019 | Story Charlene Stanley | Photo Charl Devenish
4IR Prof Marwala
Prof Tshilidzi Marwala, Vice-Chancellor and Principal of the University of Johannesburg and speaker at the first UFS public event on 4IR awareness (middle), with Prof Corli Witthuhn, UFS Vice-Rector: Research (left), and Tafadza Kachara, member of the UFS 4IR committee.

A computer programmed to play poker and learning by itself how to bluff; an algorithm that predicts whether two countries will ever go to war; machines that detect epilepsy with almost flawless accuracy these are some of the groundbreaking abilities brought about by technologies associated with the Fourth Industrial Revolution (4IR).

Addressing the first UFS public event to enhance 4IR awareness, Professor Tshilidzi Marwala, Vice-Chancellor and Principal of the University of Johannesburg, briefed staff, interested parties and members of the media about recent 4IR developments and their implications.

Prof Marwala is currently a thought leader on the impact of the 4IR on higher education in South Africa as well as the Deputy Chairperson of the national commission appointed by the president to formulate 4IR strategies for South Africa.

Industrial revolution history

He recapped how, during the first industrial revolution, people started to understand how nature worked, ultimately leading to the development of the steam engine.
The second industrial revolution was marked by the development of electromagnetism which led to electrification and mass production, while the third produced computerisation and a rise in digital technology. 

The fourth industrial revolution is characterised by a fusion of technologies that blur the lines between cyber, physical and biological systems. This has led to rapid advances in fields such as artificial intelligence, quantum computing and 3D printing.


Artificial intelligence

Prof Marwala pointed out that, although fears were rife of machines taking over people’s jobs, the flipside of the coin was that dangerous jobs such as fire rescue operations could be carried out by machines without endangering lives.

Artificial intelligence can be employed to prevent bridge and building collapses by monitoring the condition of structures. It can also be used in credit scoring, where machines search for and analyse all the available data on a credit applicant, without having to rely only on the (sometimes fraudulent) information supplied by the credit seeker. 

He emphasised the great need to develop algorithms applicable to our continent, such as translating software that makes provision for the clicks in languages like isiXhosa, and facial recognition software that incorporates data collected in African countries. 


Is Africa ready? 

Responding to a question from an audience member, Prof Marwala indicated that Africa was certainly not ready for the 4IR when it came to the content of teaching curricula and infrastructure.

“As universities, we should not sit back and wait for change. We have the responsibility to lead our societies to have the same experiences as elsewhere in the world,” he concluded.

News Archive

UFS postdoctoral Fellow expands international opportunities for women in Science Communication
2016-12-13

Description: Mikateko Höppener Tags: Mikateko Höppener 

Mikateko Höppener, postdoctoral Fellow at the
Centre for Research on Higher Education and
Development (CRHED), University of the Free State (UFS),
who was selected as one of five South African women
to participate in the Best Practice in Science
Communication UK study tour.

“Often, the power lies in our own hands as individuals to take the initiative, be curious about opportunities to learn, develop an interest to make a positive contribution in society through our research, and make use of our networks within and outside of academia to effect positive change.”

This is according to Mikateko Höppener, a postdoctoral Fellow at the Centre for Research on Higher Education and Development (CRHED), at the University of the Free State (UFS), who was selected as one of five South African women to participate in the Best Practice in Science Communication UK study tour. This was part of the British Council and Academy of Science South Africa (ASSAf) women in science project.

Höppener said she saw this as an opportunity to expand opportunities for women in Science, Technology, Engineering and Mathematics (STEM). “The whole experience reinforced my conviction that there is a lot of untapped potential for young people to practise and enhance science communication in South Africa for the betterment of our communities,” she said.

During her visit to the UK, Höppener was exposed to an international networking platform of science communication practitioners and stakeholders such as the Director for Development of Vitae, departments at The Royal Society, science journalists at the BBC World Service, policy advisers and public engagement teams at the Welcome Trust, the Director of SciDev.net, and the Science Adviser for STEM Education and Public Engagement at the British Council.

Höppener said each of these meetings had highly interactive presentations and discussions with members of various organisations and the South African delegation. 

Being selected for the science communication fellowship and attending the study tour was not only personally and professionally rewarding for Höppener, it also enabled her to pass on what she had learnt to fellow emerging women researchers in South Africa.

Earlier this year, she hosted a WiSTEM (Women in Science, Technology, Engineering and Mathematics) Science Communication and Engagement Workshop at the UFS and through press releases and radio interviews, brought positive attention to the UFS to inspire young women across the country to get involved in science communication training.

“I intend to establish a science communication and engagement centre at the UFS where ongoing training, mentorship and support will be offered to young researchers to learn how to orient their knowledge and research to community development through science communication,” said Höppener.

The Best Practice in Science Communication UK study tour took place from 24 to 28 October 2016 as part of the Newton Fund Professional Development Programme South Africa.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept