Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
14 June 2019 | Story Eloise Calitz
University Consortium Launch
From left: Prof Francis Petersen, Rector and Vice-Chancellor, University of the Free State; Prof Pagollang Motloba, Chairperson of the Universities Consortium Steering Committee (Sefako Makgatho Health Sciences University); Ms Montseng Margaret Ts’Iu, MEC, Department of Health in the Free State Province; and Mr Dan Mosia, Project Management Unit, Wits Health Consortium and member of the UFS Council.

Access to health care is important to all South Africans. Improved delivery of health-care services and employment of health-care graduates is one of the key priorities of the Universities Consortium. To achieve this, the National Department of Health (NDoH) – through a closed bid – invited universities with health-science faculties to bid for the testing of contracting mechanisms in the public health-care sector.

The bid brought six universities together to form the Universities Consortium. Through a collaborative approach, they will implement the newly developed service-delivery model.  Within the next three years, the consortium aims to impact the communities they serve in a positive way by providing much needed health-care services across the nine provinces.

The Universities Consortium comprises:

University of the Witwatersrand, Johannesburg
Sefako Makgatho Health Sciences University
University of Fort Hare
University of Pretoria
Nelson Mandela University
University of the Free State

The launch

The launch of the consortium was held on 6 June 2019 in the Centenary Complex at the University of the Free State in Bloemfontein. This provided an opportunity for fruitful engagements with representatives from the consortium. The launch was attended by the MEC of Health in  the Free State Province, Ms Montseng Margaret Ts’lu, who welcomed the commitment of the universities in the consortium and thanked them for lending a helping hand to make sure that government succeed in providing these health services.

Prof Francis Petersen, Rector and Vice-Chancellor of the UFS, said the role of the university is to educate, train, and do continuous research to keep up to date with developments in various disciplines in order to enable positive change in the quality of life in our society. "Our knowledge should be used to impact our communities," Prof Petersen said. He further stated that it would be important that the ideas generated would provide much needed access to health care for all South Africans.

 The purpose of the Universities Consortium

1. The Universities Consortium will support national health delivery by assisting in the employment of graduates providing services while they complete their statutory internships/community service period.  
2. The consortium will also provide administrative and technical support to the NDoH. 
3. Universities will train professionals in accredited facilities.
4. The Universities Consortium proposed an operating model that will ensure the placement of health professionals in academic primary-care complexes.  
5. To align with the objectives of the NHI Bill 2018, the model envisages the academic primary-care complex as a contracting unit to promote sustainable, equitable, appropriate, efficient, and effective public funding for the purchasing of health-care services.
6. Wits Health Consortium (WHC), a wholly owned company of the University of the Witwatersrand, will support the Universities Consortium with key project management, financial, and administrative support for the duration of the project.

One of the key drivers of success for the Universities Consortium is collaboration and the effective implementation of this model. In the long term, the model will have a significant impact on health-care service delivery and job creation in this sector.

WATCH: NHI Universities Consortium Launch

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept