Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
06 March 2019 | Story Ruan Bruwer | Photo Varsity Sports
Tharina van der Walt
Tharina van der Walt, a first-year student, won the hammer-throw item at the first Varsity Athletics meeting in Stellenbosch on Friday – the only gold medal for the Kovsies.

Hammer thrower Tharina van der Walt was the bright spark for the University of the Free State (UFS) at the first Varsity Athletics meeting in Stellenbosch on Friday.

Van der Walt, who recently turned 19 and is one of three first-year students in the UFS team of 25 athletes, bagged the only gold medal for the Free State students. She won the hammer throw with a distance of 53,12 m.

The UFS ended in fourth place behind NWU (first), UJ (second), and Tuks (third).

Six athletes achieved second places. Both Sokwakana Mogwasi (100 m) and Ts’epang Sello (800 m) came within a whisker of claiming victory.  Mogwasi lost the 100 m by 00:04 seconds, but in the process improved her personal best from 11,89 to 11,58. Sello (2:08,47) was in the lead for most of the 800 m but was eventually defeated by Niene Muller of Tuks by less than half a second.

Mogwasi was also second in the 200 m with a fast 24,92. Other silver medals were obtained by Yolandi Stander in the discus (52,70 m), Peter Makgato in the long jump (7,66 m), and Marné Mentz in a very fast 1500 m race. Mentz (04:26,63) chopped more than five seconds off her previous best time of 4:32,00. Her time was the third fastest ever in the 1 500 m at Varsity Athletics.

There were three third places: Sefako Mokhosoa (15,47 – triple jump), Petrus Jacobs (14,55 – 110 m hurdles), and the women’s 4x100 m relay team (Mogwasi, Elsabé du Plessis, Joviale Mbisha, and Micháela Wright).

Four athletes just missed out on podium positions, achieving fourth places.

The second Varsity athletics meeting will take place in Potchefstroom on 15 March 2019.

News Archive

Extending new discoveries in the deep subsurface – UFS paper published in Nature Communications
2015-11-30



Scanning electron microscopy of some of the Eukarya recovered from two different mines. (a) Dochmiotrema sp. (Plathyelminthes), (b) A. hemprichi (Annelida), (c) Mylonchulus brachyurus (Nematoda), (d) Amphiascoides (Arthropoda). Scale bar, 50 µm (a,b), 100 µm (c), 20 µm (d).

Following the discovery of the first Eukarya in the deep subsurface (Nature, 2010) by a research group from the Department of Microbial, Biochemical, and Food Biotechnology at the University of the Free State (UFS) and their international collaborators, intense interest has developed in understanding the diversity of more complex organisms living in these extreme environments.

Prof Gaetan Borgonie from Extreme Life Isyensya, together with a group of UFS researchers, took this research further, resulting in a paper on this research released in Nature Communications – impact factor 11.47.  This paper is an extension of the first reports of more complex life at great depths, and their abilities to survive these harsh conditions.

Ten authors from the UFS contributed with the array of expertise needed to define this discovery. The group was supported by staff from the different mining groups, long-term leading collaborators from the USA and Canada, and the idea specialist driver of the paper, Prof Borganie.

“After a sampling campaign that lasted more than two years, we identified that Platyhelminthes, Rotifera, Annelida and Arthropoda are thriving at 1.4 km depths in fissure water up to 12,000-years old in the South African mines of Driefontein and Kopanang,” said Prof Borgonie, who was appointed as associated researcher in the Department of Microbial, Biochemical, and Food Biotechnology.

This paper really opens a “can of worms” so to speak. According to Prof Esta van Heerden from the Department of Microbial, Biochemical and Food Biotechnology at the UFS they extended to define protozoa and fungi. “However, they are present in low numbers,” she said.

Characterisation of the different species reveals that many are opportunistic organisms. In house-adapted video equipment was used to film inside the fissure for the home of the organisms.

This is the first-known study to demonstrate the in situ distribution of biofilms on fissure rock faces using video documentation. Calculations suggest that food, not dissolved oxygen, is the limiting factor for population growth. The discovery of a group of complex multicellular organisms in the underground has important implications for the search for life on other planets in our solar system.

More articles

The strange beasts that live in solid rock deep underground
A microscopic ‘zoo’ is found deep, deep underground

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept