Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 November 2019 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Farmovs
At a first for South Africa, the SACRA clinical trials capacity-building workshop with government, research institutions, and industry, were from the left: Dr Nathaniel Mofolo, Dr Rita Nathan, Dr Mojalefa Maseloa (Head: Clinical Services in the Clinical Unit at the Universitas Hospital) and Sue Baily (Site Management Head at IQVIA).

Whether it is to treat the flu or a more serious illness, all medicines go through a very costly and lengthy research process before being approved for prescription to patients. The cumulative time from the beginning of trials to marketing approval has increased over the past ten years. 

According to Dr Vathi Papu-Zamxaka from the South African Clinical Research Association (SACRA), South Africans would not have had access to safe and effective medicines, had it not been for the intensive research conducted on new medicines. 

On 7 November 2019, a group of 115 delegates representing the Free State Department of Health, the UFS, private research sites, and the pharmaceutical industry met at FARMOVS on the Bloemfontein Campus of the University of the Free State (UFS) for the SACRA clinical trials capacity-building workshop.

2,1 billion dollars to develop one successful drug

Dr Michelle Middle, Chief Medical Officer at FARMOVS, provided some interesting stats on the process for drugs to hit the shelves: “One out of 10 drugs entering human research will be approved. The cost of development of one successful drug is approximately 2,1 billion dollars. And the time to develop a drug, from submission of the Investigational New Drug Application (IND) to approval by the Food and Drug Administration (FDA), is between 12 and 15 years.”

Dr Middle stated that drug development is one of the most regulated processes, with ethics and patient safety governing the undertaking. “With SAHPRA (South African Health Products Regulatory Agency) having some of the strictest regulations in the world, South Africa has a good history of running trials.  In addition, fast growth is expected for the pharmaceutical market on the African continent, necessitating the need for increased clinical trials on this continent,” she said. 

Very few clinical trials hosted in South Africa 

Although Africa has the broadest genetic variability of all human populations and carries 17% of the global population, very few clinical trials are hosted on the continent. Globally, there are currently approximately 322 000 clinical trials being actively conducted, of which only 1 700 are conducted in Africa, i.e. less than 3%.  Even worse, only 304 of the 1 700 trials running in Africa are conducted in South Africa.  There is thus a critical need for South Africa as a country to market itself as a clinical trial destination and to attract more trials to the country.

South Africa’s competitive edge lies in being known for its ICH (International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use)-compliant top-quality research, racial and genetic diverse trial participants, good medical infrastructure and expertise, and the good reputation of the regulator (SAHPRA). “There are, however, a need for transformation and capacity building in clinical research in the country,” said Dr Middle. 

Dr Rita Nathan, Head of Clinical Services in the Clinical Department at the Universitas Hospital, who was representing government at the workshop, is looking to strengthen clinical trials across government and industry by focusing on, among others, funding models, operations management, and service delivery. 

From the UFS Faculty of Health Sciences, Dr Nathaniel Mofolo, Head of the School of Clinical Medicine, said collaboration between stakeholders is important. “This initiative is giving direction to the UFS vision of being a research-led university.” 

Other topics discussed at the workshop include the clinical trials landscape, how clinical trials work, the patient factor, ethics in clinical trials, and the economic aspect of clinical trials. 

News Archive

Research by experts published in Nature
2011-06-02

 
The members of the research group are, from the left, front: Christelle van Rooyen, Mariana Erasmus, Prof. Esta van Heerden; back: Armand Bester and Prof. Derek Litthauer.
Photo: Gerhard Louw

A  research article on the work by a team of experts at our university, under the leadership of Prof. Esta van Heerden, and counterparts in Belgium and the USA has been published in the distinguished academic journal Nature today (Thursday, 2 June 2011).

The article – Nematoda from the terrestrial deep subsurface of South Africa – sheds more light on life in the form of a small worm living under extreme conditions in deep hot mines. It was discovered 1,3 km under the surface of the earth in the Beatrix Goldmine close to Welkom and is the first multi-cellular organism that was found so far beneath the surface of the earth. The worm (nematode) was found in between a rock face that is between 3 000 and 12 000 years old.

The research can shed some new light on the possibility of life on other planets, previously considered impossible under extreme conditions. It also expands the possibilities into new areas where new organisms may be found.

These small invertebrates live in terrestrial soil subjected to stress almost for 24 hours They live through sunshine, rain, scorching temperatures and freezing conditions. Through time they developed a means to cope with harsh conditions. Terrestrial nematodes (roundworms, not to be confused or related to earthworms) are among those very tough small invertebrates that deal with those conditions everywhere. After insects they are the most dominant multi-cellular (metazoan) species on the planet having a general size of 0,5 to 1 mm and are among the oldest metazoans on the planet, Nature says in a statement on the article.

They inhabit nearly every imaginable habitat form the deep seas to the acid in pitcher . Some nematodes simply eat bacteria and these are the ones we study here. Terrestrial nematodes have developed a survival stage that can take them through hard times (absence of food, extreme temperatures, too little oxygen, crowding, and more).

At the head of the research was Prof. Gaetan Borgonie of the Ghent University in Belgium and a world leader in the discipline of nematode research. He was brought into contact with the South African research leader, Prof. Esta van Heerden, who set up a cooperation agreement with the University of Ghent and Prof. Borgonie. Prof. Van Heerden manages the Extreme Biochemistry group at the UFS and the research was funded by several research grants.

The search for worms began in earnest in 2007, but it was soon clear that the sampling strategy was insufficient. A massive sampling campaign in 2008-2009 in several mines led to the discovery of several nematodes and the new nematode species Halicephalobus mephisto. It is named after the legend of Faust where the devil, also known as the lord of the underworld is called Mephistopheles.

Nature says special filters had to be designed and installed on various boreholes. Unfortunately, there is no easy way of finding a magic formula and designs had to be adapted by trial and error; improving existing designs all the time. The work of the UFS Mechanical Workshop, which manufactured, adapted and helped design it, was crucial in this respect. Filters were left on the holes for varying periods, sometimes for a few hours and sometimes for months. Prof. Derek Litthauer from the UFS played a big role in sampling, filter designs and coming up with ideas for names for the new nematode with Prof. Borgonie.

Research showed that the nematodes can live in the deep for up to 12 000 years. Three students – Armand Bester, Mariana Erasmus and Christelle van Rooyen from the UFS – did the work on this.

The importance of multi-cellular animals living in the ultra-deep subsurface is twofold: The nematodes graze on the existing bacterial population and influence their turnover. Secondly, if more complex multi-cellular organisms can survive in the deep subsurface on earth, this may be good news when looking for life on other planets where the surface is considered too inhospitable (e.g. Mars). Complex life forms can be found in ecosystems previously thought to be uninhabitable. Nature says this expands the possibilities into new areas where new organisms may be discovered.

Future research will focus on selective boreholes to look for more metazoans, so that a better idea of the complexity of the ecosystems there can be obtained. It will also look for metazoans in the deep subsurface on other continents to determine similarities and differences.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept