Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 November 2019 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Farmovs
At a first for South Africa, the SACRA clinical trials capacity-building workshop with government, research institutions, and industry, were from the left: Dr Nathaniel Mofolo, Dr Rita Nathan, Dr Mojalefa Maseloa (Head: Clinical Services in the Clinical Unit at the Universitas Hospital) and Sue Baily (Site Management Head at IQVIA).

Whether it is to treat the flu or a more serious illness, all medicines go through a very costly and lengthy research process before being approved for prescription to patients. The cumulative time from the beginning of trials to marketing approval has increased over the past ten years. 

According to Dr Vathi Papu-Zamxaka from the South African Clinical Research Association (SACRA), South Africans would not have had access to safe and effective medicines, had it not been for the intensive research conducted on new medicines. 

On 7 November 2019, a group of 115 delegates representing the Free State Department of Health, the UFS, private research sites, and the pharmaceutical industry met at FARMOVS on the Bloemfontein Campus of the University of the Free State (UFS) for the SACRA clinical trials capacity-building workshop.

2,1 billion dollars to develop one successful drug

Dr Michelle Middle, Chief Medical Officer at FARMOVS, provided some interesting stats on the process for drugs to hit the shelves: “One out of 10 drugs entering human research will be approved. The cost of development of one successful drug is approximately 2,1 billion dollars. And the time to develop a drug, from submission of the Investigational New Drug Application (IND) to approval by the Food and Drug Administration (FDA), is between 12 and 15 years.”

Dr Middle stated that drug development is one of the most regulated processes, with ethics and patient safety governing the undertaking. “With SAHPRA (South African Health Products Regulatory Agency) having some of the strictest regulations in the world, South Africa has a good history of running trials.  In addition, fast growth is expected for the pharmaceutical market on the African continent, necessitating the need for increased clinical trials on this continent,” she said. 

Very few clinical trials hosted in South Africa 

Although Africa has the broadest genetic variability of all human populations and carries 17% of the global population, very few clinical trials are hosted on the continent. Globally, there are currently approximately 322 000 clinical trials being actively conducted, of which only 1 700 are conducted in Africa, i.e. less than 3%.  Even worse, only 304 of the 1 700 trials running in Africa are conducted in South Africa.  There is thus a critical need for South Africa as a country to market itself as a clinical trial destination and to attract more trials to the country.

South Africa’s competitive edge lies in being known for its ICH (International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use)-compliant top-quality research, racial and genetic diverse trial participants, good medical infrastructure and expertise, and the good reputation of the regulator (SAHPRA). “There are, however, a need for transformation and capacity building in clinical research in the country,” said Dr Middle. 

Dr Rita Nathan, Head of Clinical Services in the Clinical Department at the Universitas Hospital, who was representing government at the workshop, is looking to strengthen clinical trials across government and industry by focusing on, among others, funding models, operations management, and service delivery. 

From the UFS Faculty of Health Sciences, Dr Nathaniel Mofolo, Head of the School of Clinical Medicine, said collaboration between stakeholders is important. “This initiative is giving direction to the UFS vision of being a research-led university.” 

Other topics discussed at the workshop include the clinical trials landscape, how clinical trials work, the patient factor, ethics in clinical trials, and the economic aspect of clinical trials. 

News Archive

Stem cell research and human cloning: legal and ethical focal points
2004-07-29

   

(Summary of the inaugural lecture of Prof Hennie Oosthuizen, from the Department of Criminal and Medical Law at the Faculty of Law of the University of the Free State.)

 

In the light of stem cell research, research on embryo’s and human cloning it will be fatal for legal advisors and researchers in South Africa to ignore the benefits that new bio-medical development, through research, contain for this country.

Legal advisors across the world have various views on stem cell research and human cloning. In the USA there is no legislation that regulates stem cell research but a number of States adopted legislation that approves stem cell research. The British Parlement gave permission for research on embryonic stem cells, but determined that it must be monitored closely and the European Union is of the opinion that it will open a door for race purification and commercial exploitation of human beings.

In South Africa the Bill on National Health makes provision for therapeutical and non therapeutical research. It also makes provision for therapeutical embryonical stem cell research on fetuses, which is not older than 14 days, as well as for therapeutical cloning under certain circumstances subject to the approval of the Minister. The Bill prohibits reproductive cloning.

Research on human embrio’s is a very controversial issue, here and in the rest of the world.

Researchers believe that the use of stem cell therapy could help to side-step the rejection of newly transplanted organs and tissue and if a bank for stem cell could be built, the shortage of organs for transplants would become something of the past. Stem cells could also be used for healing of Alzheimer’s, Parkinson’s and spinal injuries.

Sources from which stem cells are obtained could also lead to further ethical issues. Stem cells are harvested from mature human cells and embryonic stem cells. Another source to be utilised is to take egg cells from the ovaries of aborted fetuses. This will be morally unacceptable for those against abortions. Linking a financial incentive to that could become more of a controversial issue because the woman’s decision to abort could be influenced. The ideal would be to rather use human fetus tissue from spontaneous abortions or extra-uterine pregnancies than induced abortions.

The potential to obtain stem cells from the blood of the umbilical cord, bone-marrow and fetus tissue and for these cells to arrange themselves is known for quite some time. Blood from the umbilical cord contains many stem cells, which is the origin of the body’s immune and blood system. It is beneficial to bank the blood of a newborn baby’s umbilical cord. Through stem cell transplants the baby or another family member’s life could be saved from future illnesses such as anemia, leukemia and metabolic storing disabilities as well as certain generic immuno disabilities.

The possibility to withdraw stem cells from human embrio’s and to grow them is more useable because it has more treatment possibilities.

With the birth of Dolly the sheep, communities strongly expressed their concern about the possibility that a new cloning technique such as the replacement of the core of a cell will be used in human reproduction. Embryonic splitting and core replacement are two well known techniques that are associated with the cloning process.

I differentiate between reproductive cloning – to create a cloned human embryo with the aim to bring about a pregnancy of a child that is identical to another individual – and therapeutically cloning – to create a cloned human embryo for research purposes and for healing human illnesses.

Worldwide people are debating whether to proceed with therapeutical cloning. There are people for and against it. The biggest ethical objection against therapeutical cloning is the termination of the development of a potential human being.

Children born from cloning will differ from each other. Factors such as the uterus environment and the environment in which the child is growing up will play a role. Cloning create unique children that will grow up to be unique individuals, just like me and you that will develop into a person, just like you and me. If we understand this scientific fact, most arguments against human cloning will disappear.

Infertility can be treated through in vitro conception. This process does not work for everyone. For some cloning is a revolutionary treatment method because it is the only method that does not require patients to produce sperm and egg cells. The same arguments that were used against in vitro conception in the past are now being used against cloning. It is years later and in vitro cloning is generally applied and accepted by society. I am of the opinion that the same will happen with regard to human cloning.

There is an argument that cloning must be prohibited because it is unsafe. Distorted ideas in this regard were proven wrong. Are these distorted ideas justified to question the safety of cloning and the cloning process you may ask. The answer, according to me, is a definite no. Human cloning does have many advantages. That includes assistance with infertility, prevention of Down Syndrome and recovery from leukemia.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept