Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 October 2019 | Story Leonie Bolleurs | Photo Leonie Bolleurs
SA animal population genetically more diverse than Europe
The Department of Genetics appointed the curator of the mammal collection in Austria’s Natural History Museum, Prof Frank Zachos. From the left are: Lerato Diseko, PhD Human Molecular Genetics; Prof Paul Grobler; Sivuyile Peni, MSc Molecular Genetics; Prof Frank Zachos; and Gerhard van Bosch, MSc Conservation Genetics.


South Africa is one of the greatest places on this planet to study mammals. These are the words of Prof Frank Zachos, newly appointed affiliated Professor in the Department of Genetics at the University of the Free State (UFS). 

He is also the curator of the Mammal Collection at the Natural History Museum in Vienna, Austria, the editor of the Elsevier journal Mammalian Biology, and author of several books, including Species Concepts in Biology. 

During a visit to South Africa, Prof Zachos addressed a group of UFS staff and students on the topic, ‘Conservation biology and genetics on two continents – case studies from mammalogy and ornithology’.

Inbreeding and deformities 

According to Prof Paul Grobler, Head of the UFS Department of Genetics, Prof Zachos has much experience in conservation biology studies. A large part of his work is on the population/conservation genetics of mammals (particularly deer) and, to a lesser degree, birds. Among others, he has studied red deer and the alpine golden eagle and has previously collaborated with Prof Grobler on projects involving local impala and gemsbok populations. 

Prof Grobler explains: “Typical conservation genetics studies helps one understand whether it's genetically going well with a species or population or not. This information can then be used to decide whether to move new animals to a population to prevent loss of genetic diversity.”

In his lecture, Prof Zachos explained the genetic diversity of red deer across Europe, and how this was influenced by past events (glaciers), but also by current anthropogenic factors (motor highways). 

He said there are several similarities between the mammals and birds of Europe and South Africa. The area south of the Sahara, however, is more of a biodiversity hotspot, unlike most areas in Europe where there is often lower genetic diversity in certain species. European deer species, for instance, are inherently less genetically diverse than antelope.

“Small population sizes can result in inbreeding. In some animals, this can result in deformities such as a shorter lower jaw or calves born without eyes,” said Prof Zachos.

Tracing geographic origin

With information on the gene diversity of a population of animals, authorities can implement preventative measures to address inbreeding, e.g. building green bridges to connect populations.

Population/conservation genetics studies are also helpful to determine which animals from a certain population are native to a specific area. Prof Zachos was involved in a study for the Belgian government, tracing the geographic and genetic origin of the country’s red deer. 

He said the ideal is to have genetic information for every population for management applications. 

During his visit, Prof Zachos also visited the Doornkloof Nature Reserve, since he is co-supervising a PhD student in the UFS Department of Genetics, who is based at Doornkloof. 

News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept