Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 October 2019 | Story Leonie Bolleurs | Photo Leonie Bolleurs
SA animal population genetically more diverse than Europe
The Department of Genetics appointed the curator of the mammal collection in Austria’s Natural History Museum, Prof Frank Zachos. From the left are: Lerato Diseko, PhD Human Molecular Genetics; Prof Paul Grobler; Sivuyile Peni, MSc Molecular Genetics; Prof Frank Zachos; and Gerhard van Bosch, MSc Conservation Genetics.


South Africa is one of the greatest places on this planet to study mammals. These are the words of Prof Frank Zachos, newly appointed affiliated Professor in the Department of Genetics at the University of the Free State (UFS). 

He is also the curator of the Mammal Collection at the Natural History Museum in Vienna, Austria, the editor of the Elsevier journal Mammalian Biology, and author of several books, including Species Concepts in Biology. 

During a visit to South Africa, Prof Zachos addressed a group of UFS staff and students on the topic, ‘Conservation biology and genetics on two continents – case studies from mammalogy and ornithology’.

Inbreeding and deformities 

According to Prof Paul Grobler, Head of the UFS Department of Genetics, Prof Zachos has much experience in conservation biology studies. A large part of his work is on the population/conservation genetics of mammals (particularly deer) and, to a lesser degree, birds. Among others, he has studied red deer and the alpine golden eagle and has previously collaborated with Prof Grobler on projects involving local impala and gemsbok populations. 

Prof Grobler explains: “Typical conservation genetics studies helps one understand whether it's genetically going well with a species or population or not. This information can then be used to decide whether to move new animals to a population to prevent loss of genetic diversity.”

In his lecture, Prof Zachos explained the genetic diversity of red deer across Europe, and how this was influenced by past events (glaciers), but also by current anthropogenic factors (motor highways). 

He said there are several similarities between the mammals and birds of Europe and South Africa. The area south of the Sahara, however, is more of a biodiversity hotspot, unlike most areas in Europe where there is often lower genetic diversity in certain species. European deer species, for instance, are inherently less genetically diverse than antelope.

“Small population sizes can result in inbreeding. In some animals, this can result in deformities such as a shorter lower jaw or calves born without eyes,” said Prof Zachos.

Tracing geographic origin

With information on the gene diversity of a population of animals, authorities can implement preventative measures to address inbreeding, e.g. building green bridges to connect populations.

Population/conservation genetics studies are also helpful to determine which animals from a certain population are native to a specific area. Prof Zachos was involved in a study for the Belgian government, tracing the geographic and genetic origin of the country’s red deer. 

He said the ideal is to have genetic information for every population for management applications. 

During his visit, Prof Zachos also visited the Doornkloof Nature Reserve, since he is co-supervising a PhD student in the UFS Department of Genetics, who is based at Doornkloof. 

News Archive

Is milk really so well-known, asks UFS’s Prof. Osthoff
2011-03-17

Prof. Garry Osthoff
Photo: Stephen Collett

Prof. Garry Osthoff opened a whole new world of milk to the audience in his inaugural lecture, Milk: the well-known (?) food, in our Department of Microbial, Biochemical and Food Biotechnology of the Faculty of Natural and Agricultural Sciences.

Prof. Osthoff has done his research in protein chemistry, immuno-chemistry and enzymology at the Council for Scientific and Industrial Research (CSIR) in Pretoria and post-doctoral research at the Bowman-Grey School of Medicine, North Carolina, USA. That was instrumental in establishing food chemistry at the university.
 
He is involved in chemical aspects of food, with a focus on dairy science and technology. He is also involved in the research of cheese processing as well as milk evolution and concentrated on milk evolution in his lecture. Knowledge of milk from dairy animals alone does not provide all the explanations of milk as food.
 
Some aspects he highlighted in his lecture were that milk is the first food to be utilised by young mammals and that it is custom-designed for each species. “However, mankind is an opportunist and has found ways of easy access to food by the practice of agriculture, where plants as well as animals were employed or rather exploited,” he said.
 
The cow is the best-known milk producer, but environmental conditions forced man to select other animals. In spite of breeding selection, cattle seem not to have adapted to the most extreme conditions such as high altitudes with sub-freezing temperatures, deserts and marshes.
 
Prof. Osthoff said the consumption of the milk as an adult is not natural; neither is the consumption of milk across species. This practice of mankind may often have consequences, when signs of malnutrition or diseases are noticed. Two common problems are an allergy to milk and lactose intolerance.
 
Allergies are normally the result of an immune response of the consumer to the foreign proteins found in the milk. In some cases it might help to switch from one milk source to another, such as switching from cow’s milk to goat’s milk.
 
Prof. Osthoff said lactose intolerance – the inability of adult humans to digest lactose, the milk sugar – is natural, as adults lose that ability to digest lactose. The symptoms of the condition are stomach cramps and diarrhoea. This problem is mainly found in the warmer climates of the world. This could be an indication of early passive development of dairy technology. In these regions milk could not be stored in its fresh form, but in a fermented form, in which case the lactose was pre-digested by micro-organisms, and the human population never adapted to digesting lactose in adulthood.
 
According to Prof. Osthoff, it is basically the lactose in milk that has spurred dairy technology. Its fermentation has resulted in the development of yoghurts and all the cheeses that we know. In turn, the intolerance to lactose has spurred a further technological solution: lactose-free milk is currently produced by pre-digestion of lactose with enzymes.
 
It was realised that the milks and products from different species differed in quality aspects such as keeping properties and taste. It was also realised that the nutritional properties differed as well as their effects on health. One example is the mentioned allergy against cow’s milk proteins, which may be solved by the consumption of goat’s milk. The nutritional benefits and technological processing of milk aroused an interest in more information, and it was realised that the information gained from human milk and that of the few domesticated species do not provide a complete explanation of the properties of milk as food. Of the 250 species of milk which have been studied, only the milk of humans and a few domesticated dairy animals has been studied in detail.

Media Release
15 March 2011
Issued by: Lacea Loader
Director: Strategic Communication
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: news@ufs.ac.za

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept