Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 October 2019 | Story Leonie Bolleurs | Photo Leonie Bolleurs
SA animal population genetically more diverse than Europe
The Department of Genetics appointed the curator of the mammal collection in Austria’s Natural History Museum, Prof Frank Zachos. From the left are: Lerato Diseko, PhD Human Molecular Genetics; Prof Paul Grobler; Sivuyile Peni, MSc Molecular Genetics; Prof Frank Zachos; and Gerhard van Bosch, MSc Conservation Genetics.


South Africa is one of the greatest places on this planet to study mammals. These are the words of Prof Frank Zachos, newly appointed affiliated Professor in the Department of Genetics at the University of the Free State (UFS). 

He is also the curator of the Mammal Collection at the Natural History Museum in Vienna, Austria, the editor of the Elsevier journal Mammalian Biology, and author of several books, including Species Concepts in Biology. 

During a visit to South Africa, Prof Zachos addressed a group of UFS staff and students on the topic, ‘Conservation biology and genetics on two continents – case studies from mammalogy and ornithology’.

Inbreeding and deformities 

According to Prof Paul Grobler, Head of the UFS Department of Genetics, Prof Zachos has much experience in conservation biology studies. A large part of his work is on the population/conservation genetics of mammals (particularly deer) and, to a lesser degree, birds. Among others, he has studied red deer and the alpine golden eagle and has previously collaborated with Prof Grobler on projects involving local impala and gemsbok populations. 

Prof Grobler explains: “Typical conservation genetics studies helps one understand whether it's genetically going well with a species or population or not. This information can then be used to decide whether to move new animals to a population to prevent loss of genetic diversity.”

In his lecture, Prof Zachos explained the genetic diversity of red deer across Europe, and how this was influenced by past events (glaciers), but also by current anthropogenic factors (motor highways). 

He said there are several similarities between the mammals and birds of Europe and South Africa. The area south of the Sahara, however, is more of a biodiversity hotspot, unlike most areas in Europe where there is often lower genetic diversity in certain species. European deer species, for instance, are inherently less genetically diverse than antelope.

“Small population sizes can result in inbreeding. In some animals, this can result in deformities such as a shorter lower jaw or calves born without eyes,” said Prof Zachos.

Tracing geographic origin

With information on the gene diversity of a population of animals, authorities can implement preventative measures to address inbreeding, e.g. building green bridges to connect populations.

Population/conservation genetics studies are also helpful to determine which animals from a certain population are native to a specific area. Prof Zachos was involved in a study for the Belgian government, tracing the geographic and genetic origin of the country’s red deer. 

He said the ideal is to have genetic information for every population for management applications. 

During his visit, Prof Zachos also visited the Doornkloof Nature Reserve, since he is co-supervising a PhD student in the UFS Department of Genetics, who is based at Doornkloof. 

News Archive

UFS professor addresses genetically modified food in South Africa in inaugural lecture
2016-09-23

Description: Chris Viljoen inaugural lecture Tags: Chris Viljoen inaugural lecture

At the inaugural lecture were, from the left front,
Prof Lis Lange, Vice Rector: Academic;
Prof Chris Viljoen; Prof Gert van Zyl,
Dean: Faculty of Health Sciences; back: Prof Marius Coetzee,
Head of Department of Haematology and Cell Biology;
and Dr Lynette van der Merwe, Undergraduate
Programme Director.
Photo: Stephen Collett

The first genetically modified (GM) crops in South Africa were planted in 1998. Eighteen years later, the country is one of the largest producers of GM food in the world. Those in support of genetically modified crops say this process is the only way to feed a rapidly growing world population. But those who criticise GM food describe it as a threat to the environment and safety of the population. Who is right? According to Prof Chris Viljoen of the Department of Haematology and Cell Biology at the University of the Free State, neither position is well-founded.

GM crops play a vital role in food security

While GM crops have an important role to play in increasing food production, the technology is only part of the solution to providing sufficient food for a growing world population. The major genetically modified crops produced in the world include soybean, cotton, maize and canola. However, the authenticity of food labelling and the long-term safety of GM food are issues that consumers are concerned about.

Safety and labelling of GM food important in South Africa
In his inaugural lecture on the subject “Are you really going to eat that?” Prof Viljoen addressed the importance of the safety and labelling of GM food in the country. “In order for food to be sustainable, production needs to be economically and environmentally sustainable. On the other hand, food integrity, including food quality, authenticity and safety need to be ensured,” Prof Viljoen said. 

Labelling of food products for genetic modification was mandatory in South Africa, he went on to say. “It allows consumers the right of choice whether to eat genetically modified foods or not.” The Consumer Protection Act of 2008 requires food ingredients containing more than 5% of GM content to be labelled. 

GMO Testing Facility world leader in food diagnostic testing
In 1999, Prof Viljoen spearheaded research in developing a GM diagnostic testing platform, and in 2003, a commercial diagnostic platform for GM status certification, called the GMO Testing Facility, was founded. The facility is a licensed Eurofins GeneScan laboratory   a world leader in food diagnostic testing   and provides diagnostic detection and quantification of genetically modified organisms (GMOs) in grain and processed foods for the local and international market.

Molecular diagnostic technology the future of food integrity, authenticity and safety
With GM labelling now well-established in South Africa, the next challenge is to establish the use of molecular diagnostic technology to ensure that food integrity, including food authenticity and safety is maintained, said Prof Viljoen.

“To the question ‘Are you really going to eat that?’ the answer is ‘yes’, but let’s continue doing research to make sure that what we eat is safe and authentic.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept