Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 October 2019 | Story Leonie Bolleurs | Photo Leonie Bolleurs
SA animal population genetically more diverse than Europe
The Department of Genetics appointed the curator of the mammal collection in Austria’s Natural History Museum, Prof Frank Zachos. From the left are: Lerato Diseko, PhD Human Molecular Genetics; Prof Paul Grobler; Sivuyile Peni, MSc Molecular Genetics; Prof Frank Zachos; and Gerhard van Bosch, MSc Conservation Genetics.


South Africa is one of the greatest places on this planet to study mammals. These are the words of Prof Frank Zachos, newly appointed affiliated Professor in the Department of Genetics at the University of the Free State (UFS). 

He is also the curator of the Mammal Collection at the Natural History Museum in Vienna, Austria, the editor of the Elsevier journal Mammalian Biology, and author of several books, including Species Concepts in Biology. 

During a visit to South Africa, Prof Zachos addressed a group of UFS staff and students on the topic, ‘Conservation biology and genetics on two continents – case studies from mammalogy and ornithology’.

Inbreeding and deformities 

According to Prof Paul Grobler, Head of the UFS Department of Genetics, Prof Zachos has much experience in conservation biology studies. A large part of his work is on the population/conservation genetics of mammals (particularly deer) and, to a lesser degree, birds. Among others, he has studied red deer and the alpine golden eagle and has previously collaborated with Prof Grobler on projects involving local impala and gemsbok populations. 

Prof Grobler explains: “Typical conservation genetics studies helps one understand whether it's genetically going well with a species or population or not. This information can then be used to decide whether to move new animals to a population to prevent loss of genetic diversity.”

In his lecture, Prof Zachos explained the genetic diversity of red deer across Europe, and how this was influenced by past events (glaciers), but also by current anthropogenic factors (motor highways). 

He said there are several similarities between the mammals and birds of Europe and South Africa. The area south of the Sahara, however, is more of a biodiversity hotspot, unlike most areas in Europe where there is often lower genetic diversity in certain species. European deer species, for instance, are inherently less genetically diverse than antelope.

“Small population sizes can result in inbreeding. In some animals, this can result in deformities such as a shorter lower jaw or calves born without eyes,” said Prof Zachos.

Tracing geographic origin

With information on the gene diversity of a population of animals, authorities can implement preventative measures to address inbreeding, e.g. building green bridges to connect populations.

Population/conservation genetics studies are also helpful to determine which animals from a certain population are native to a specific area. Prof Zachos was involved in a study for the Belgian government, tracing the geographic and genetic origin of the country’s red deer. 

He said the ideal is to have genetic information for every population for management applications. 

During his visit, Prof Zachos also visited the Doornkloof Nature Reserve, since he is co-supervising a PhD student in the UFS Department of Genetics, who is based at Doornkloof. 

News Archive

Oxford professor unlocks secrets of DNA
2017-03-31

Description: Oxford professor unlocks secrets of DNA Tags: Oxford professor unlocks secrets of DNA

From left are: Dr Cristian Capelli, Associate Professor
of Human Evolution at Oxford University;
Dr Karen Ehlers, Senior Lecturer and Prof Paul Grobler,
both from the Department of Genetics at the UFS.
Photo: Siobhan Canavan

Many people are interested to know more about their history and origins, and with the help of genetics, it is possible to provide more information about one’s roots.

During a lecture at the Department of Genetics at the University of the Free State (UFS), Dr Cristian Capelli, Associate Professor of Human Evolution at Oxford University in the UK, addressed staff members and students on the history of our species.

Reconstructing the history of human population
With his research, titled: People on the move: population structure and gene-flow in Southern Africa, Dr Capelli looks at reconstructing the history of human populations, focusing mainly on how the different human populations are related, as well as how they exchange genes.

He said this research could be of great significance to the medical field too. “Knowing what the genetic make-up of individuals is, can give us some information about their susceptibility to diseases, or how they would react to a given medicine. Therefore, this knowledge can be used to inform health-related policies.”

Combining individual histories of multiple people
To understand this research more clearly, Dr Capelli explained it in terms of DNA and how every individual receives half of their DNA from their mother and half from their father just as their parents had received theirs from their parents. And so it goes from generation after generation. Each individual stores a part of their ancestors’ DNA which makes up the individual genetic history of each person.

“If we combine these individual histories by looking at the DNA of multiple people, we can identify the occurrences that are shared across individuals and therefore reconstruct the history of a population, and in the same way on a larger scale, the history of our own species, homo sapiens.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept