Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
14 August 2020 | Story Anban Naidoo | Photo Charl Devenish

Students returning for the second semester should take note of the following important dates. Also note that the online self-service facility for module changes and additions will be available until 11 September 2020. If you are unable to register online and need assistance with changes to your registration, please contact your relevant faculty for academic advice/approval.

Important second-semester dates:

• 31 July 2020: Predicate day
• 3 August 2020: Main mid-year examination commences
• 22 August 2020: Main mid-year examination ends
• 22 August 2020: Final date to submit final marks for module with continuous assessment
• 24 August 2020: Mid-year additional examination commences
• 27 August 2020: Mid-year additional examination ends
• 28 to 31 August 2020: UFS long weekend (no academic activity)
• 1 September 2020: Second semester commences
• 1 September 2020: Second-semester registration commences (Faculty of Health Sciences)
• 2 September 2020: Final date to transfer marks for the first semester (excluding Faculty of Health Sciences)
• 3 September 2020: Second-semester registration commences (all faculties, excluding Health Sciences)
• 3 September 2020: Mid-year additional examination ends
• 10 September 2020: Final date to transfer marks for the first semester (only Faculty of Health Sciences)
• 11 September 2020: Second-semester registration ends
• 11 September 2020: Last date to cancel year modules and second-semester modules with financial credit
• 24 to 27 September: 2020: UFS long weekend
• 30 September 2020: Last date for master’s and doctoral students to register for the second semester
• 30 October to 2 November 2020: UFS long weekend
• 27 November 2020: Second-semester classes ends
• 30 November 2020 to 18 December 2020: Main Examinations
• January 2021 to 16 January 2021: Additional Examinations


News Archive

Discovery in Scorpius constellation may signify clean energy for Earth
2017-01-23

 Description: Discovery in Scorpius constellation may signify clean energy for Earth Tags: Discovery in Scorpius constellation may signify clean energy for Earth

Earlier this year, a group of international astronomers
announced the discovery of an exotic binary star system,
AR Scorpii. The system is in the Scorpius constellation.
Photos: Supplied

See article on Nature’s website 

In future, stargazers and astronomers will look at the Scorpius constellation near the Milky Way with new eyes. Earlier this year, a group of international astronomers announced the discovery of an exotic binary star system, AR Scorpii. The system is in the Scorpius constellation.

Prof Pieter Meintjes, researcher in the Department of Physics at the University of the Free State (UFS), worked with four colleagues on what he describes as a “wonderful discovery”. This sensational discovery, which could lead to the production of cleaner energy on Earth, will be published in the research journal, Nature, early in 2017.

Model developed to interpret new set of measurements
The exotic binary star which was discovered consists of a red dwarf and a white dwarf revolving around each other every 3,5 hours. The binary system showed very prominent pulsations of 117 and 118 seconds respectively. The pulsations can be explained by a bundle radiation produced by the white dwarf star.

“These new observations have shown that the radiation is strongly polarised, a sign that we are dealing with synchrotron radiation here. Synchrotron radiation is produced by electrons accelerated to extremely high energy levels in the magnetic field of the white dwarf star,” says Prof Meintjes.

He developed a theoretical model to interpret a new set of measurements that was taken by the 1,9 m telescope and the 10 m SALT telescope at the South African Astronomical Observatory (SAA0).

Totally unique phenomenon could contribute to energy production on Earth
“I further indicated that the interaction between the magnetic fields of the white dwarf star and the red dwarf star induces secondary processes that specifically describe the behaviour of the radiation in the radio band and infrared band accurately. AR Sco is the first white-red dwarf binary system of which all the pulsated radiation could be explained by the synchrotron process, which is totally unique,” says Prof Meintjes.

According to Prof Meintjes, the value of the model lies in the fact that the processes which produce the radiation in AR Sco, can also be applied to produce energy on Earth.

 

Plasma reactors are based on roughly the same processes which apply in AR Sco, and with refining, it could be utilised to generate electricity in future. This will be much cleaner than nuclear energy.

 

The model developed by Prof Meintjes explains all the radiation in the system – from radio waves to X-rays – in terms of electrons accelerated to extremely high energy levels by electric fields in the system, which then produce synchrotron radiation over a very wide band of the electromagnetic spectrum.

Prof Meintjes is currently working on a follow-up article examining the evolution of the AR Sco, in other words, the origin of such a unique system and the final state towards which it is evolving. “My vision for the immediate future is therefore to develop a model for the evolution of the source concerned,” he says.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept