Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 August 2020 | Story Andre Damons | Photo Barend Nagel
Prof Motlalepula Matsabisa, Associate Professor in the Department of Pharmacology at the University of the Free State (UFS), has been appointed as the chairperson of the World Health Organisation’s (WHO) Regional Expert Advisory Committee on Traditional Medicines for COVID-19.

Prof Motlalepula Matsabisa, Associate Professor in the Department of Pharmacology at the University of the Free State (UFS), will lead Africa’s fight against the COVID-19 pandemic with his appointment as chairperson of the World Health Organisation’s (WHO) Regional Expert Advisory Committee on Traditional Medicines for COVID-19.

Prof Matsabisa has been chosen over 25 other experts from 27 African countries to head this expert committee tasked with setting up research and clinical trials for COVID-19 and beyond. The committee is also supported by the African Union (AU), the Centers for Disease Control and Prevention (CDC – Africa), and the European and Developing Countries Clinical Trials Partnership (EDCTP).

This committee was established by the WHO and the Africa CDC on 22 July with the aim of providing independent scientific advice and support to countries on the safety, efficacy, and quality of traditional medicine therapies. It is also an effort to enhance research and development of traditional medicines for COVID-19 in Africa.

Looking forward

“This is a huge continental and global responsibility being laid on my shoulders as a chairperson.  I have to keep the committee together and ensure that it delivers on its set mandate and terms of reference.  I need to ensure that the committee helps the continent and region to get the scientific and legislative aspects on traditional medicine development on track.”  

“I have taken this position and responsibility, knowing quite well what it entails. I want to do this for the continent and for the sake of good science of all traditional healers and consumers of traditional medicines on the continent and beyond,” says Prof Matsabisa.

According to Prof Matsabisa, he is looking forward to working with a team of dedicated experts from 27 countries in the African region, and being of help to countries that need assistance with clinical trials, including preclinical work to move to clinical research.

Prof Matsabisa says he is also looking forward to countries asking South Africa to be part of their multi-centre studies in clinical trials for traditional medicines, and to help set up clinical trial teams that include Western-trained clinicians to get into traditional medicine studies. 

The work of the committee

According to Prof Matsabisa, his new position took effect the same day as his appointment and will run as long as COVID-19 is part of our daily lives and even beyond. It entails supporting member states to implement the WHO master plan for clinical trial protocols in order to generate credible data for COVID-19 results, based on traditional medicines. The committee will also coordinate support to member states in the African region to collaborate on clinical trials of traditional medicine-based therapies – elevating standards by pooling expertise in multicentre studies, as well as complying with GCP and good participatory practice guidelines for trials of emerging and re-emerging pathogens.
“The committee will also advise on strengthening the capacity of national medicine regulatory authorities to accelerate the issuance of marketing authorisations for traditional medicine products that have been well researched for safety, efficacy, and quality, as well as to expedite the approval of clinical trials on traditional medicines. This will help to meet the national registration criteria and the WHO norms and standards of quality, safety, and efficacy for the management of COVID-19 and others.”

“It will also provide independent scientific advice to the WHO and other partners regarding policies, strategies, and plans for integrating traditional medicines into COVID-19 responses and health systems,” explains Prof Matsabisa. 

Aiming for the top spot 

Prof Matsabisa has been described as having the third highest research output – something he is not satisfied with. 
“I was disappointed that only one point separated me from the second place. I will push for first place as this is my ultimate aim. My motivation for this is simple – I like what I am doing, I do not take it as a job but do it because I love research.”  

“I always like to tell students that we should be proud to one day see products in the shops that we can relate to and to which we have contributed or that we have made.   This is what drives me and my staff.  I have a beautiful team of students, staff, and postdoctoral fellows who share my vision of research.  We all have a shared vision and strive to be relevant at all times in science research, development, and teaching.”

• Prof Matsabisa was recently part of a national conference with the theme: Harnessing science, technology, and innovation in response to COVID-19: A national and international effort. The conference was hosted by Dr Blade Nzimande, Minister of Higher Education, Science and Innovation, with Pres Cyril Ramaphosa, Dr Zweli Mkhize, Minister of Health, Ebrahim Patel, Minister of Trade, Industry and Competition, Prof Sarah Anyang Agbor, African Union Commissioner for Human Resources, Science and Technology, and Dr Tedros Adhanom Ghebreyesus, Director-General of the World Health Organisation, in attendance. 

News Archive

Is milk really so well-known, asks UFS’s Prof. Osthoff
2011-03-17

Prof. Garry Osthoff
Photo: Stephen Collett

Prof. Garry Osthoff opened a whole new world of milk to the audience in his inaugural lecture, Milk: the well-known (?) food, in our Department of Microbial, Biochemical and Food Biotechnology of the Faculty of Natural and Agricultural Sciences.

Prof. Osthoff has done his research in protein chemistry, immuno-chemistry and enzymology at the Council for Scientific and Industrial Research (CSIR) in Pretoria and post-doctoral research at the Bowman-Grey School of Medicine, North Carolina, USA. That was instrumental in establishing food chemistry at the university.
 
He is involved in chemical aspects of food, with a focus on dairy science and technology. He is also involved in the research of cheese processing as well as milk evolution and concentrated on milk evolution in his lecture. Knowledge of milk from dairy animals alone does not provide all the explanations of milk as food.
 
Some aspects he highlighted in his lecture were that milk is the first food to be utilised by young mammals and that it is custom-designed for each species. “However, mankind is an opportunist and has found ways of easy access to food by the practice of agriculture, where plants as well as animals were employed or rather exploited,” he said.
 
The cow is the best-known milk producer, but environmental conditions forced man to select other animals. In spite of breeding selection, cattle seem not to have adapted to the most extreme conditions such as high altitudes with sub-freezing temperatures, deserts and marshes.
 
Prof. Osthoff said the consumption of the milk as an adult is not natural; neither is the consumption of milk across species. This practice of mankind may often have consequences, when signs of malnutrition or diseases are noticed. Two common problems are an allergy to milk and lactose intolerance.
 
Allergies are normally the result of an immune response of the consumer to the foreign proteins found in the milk. In some cases it might help to switch from one milk source to another, such as switching from cow’s milk to goat’s milk.
 
Prof. Osthoff said lactose intolerance – the inability of adult humans to digest lactose, the milk sugar – is natural, as adults lose that ability to digest lactose. The symptoms of the condition are stomach cramps and diarrhoea. This problem is mainly found in the warmer climates of the world. This could be an indication of early passive development of dairy technology. In these regions milk could not be stored in its fresh form, but in a fermented form, in which case the lactose was pre-digested by micro-organisms, and the human population never adapted to digesting lactose in adulthood.
 
According to Prof. Osthoff, it is basically the lactose in milk that has spurred dairy technology. Its fermentation has resulted in the development of yoghurts and all the cheeses that we know. In turn, the intolerance to lactose has spurred a further technological solution: lactose-free milk is currently produced by pre-digestion of lactose with enzymes.
 
It was realised that the milks and products from different species differed in quality aspects such as keeping properties and taste. It was also realised that the nutritional properties differed as well as their effects on health. One example is the mentioned allergy against cow’s milk proteins, which may be solved by the consumption of goat’s milk. The nutritional benefits and technological processing of milk aroused an interest in more information, and it was realised that the information gained from human milk and that of the few domesticated species do not provide a complete explanation of the properties of milk as food. Of the 250 species of milk which have been studied, only the milk of humans and a few domesticated dairy animals has been studied in detail.

Media Release
15 March 2011
Issued by: Lacea Loader
Director: Strategic Communication
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: news@ufs.ac.za

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept