Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
14 December 2020
Prof Abdon Atangana
Prof Abdon Atangana is known for his work in developing a new fractional operator used to model real-world problems arising in the fields of science, technology, and engineering. He was recently awarded the TWAS Mohammad A. Hamdan Award by The World Academy of Sciences.

Prof Abdon Atangana, Professor of Applied Mathematics in the Institute for Groundwater Studies at the University of the Free State (UFS), was awarded the TWAS Mohammad A. Hamdan Award by The World Academy of Sciences for the advancement of science in developing countries.

It is the first time that the TWAS Mohammad A. Hamdan Award was bestowed. According to a statement issued by TWAS, this award is given for outstanding mathematical work carried out by a scientist working and living in Africa or the Arab region. It states that the award can be given for work in pure mathematics, applied mathematics, probability, or statistics. Prof Atangana received the award for his contribution to fractal mathematics and partial differential equations.

Making a difference in society

He is known for his research in developing a new fractional operator, the Atangana-Baleanu operator, which is used to model real-world problems. With this operator, he not only describes the rate at which something will change, but also account for disrupting factors that will help to produce better projections.

His work can be applied to make complicated predictions in the fields of science, technology, and engineering. His models can, for instance, help to predict the spread of infectious diseases among people in a settlement, forecasting the number of people who will be infected each day, the number of people who will recover, and the number of people who will die.

Prof Atangana’s models can also help to advise people drilling for water by predicting how groundwater is flowing in a complex geological formation. These are only two examples of how his work can be applied to make a difference in society.

The award from TWAS is the third prestigious commendation he has received in the past month. He was recently named as one of the top 1% scientists on the global Clarivate Web of Science list. His name also appeared on a global list of leading scientists published by Stanford University in the United States. The list is the result of a study published in PLOS Biology, a peer-reviewed open-access journal.

World’s most accomplished scientists

Honours awarded by TWAS and its partners are among the most prestigious for research in the developing world. They recognise outstanding achievements and contributions to science and acknowledge the best work by scientists from the global South.

TWAS, founded in 1983 by a group of scientists under the leadership of Pakistani physicist and Nobel laureate, Abdus Salam, believes that developing nations – by growing strength in science and engineering – will be able to address challenges such as hunger, disease, and poverty, through their knowledge and skills.

TWAS is represented in 100 countries, and of the more than a thousand elected fellows, 14 are Nobel laureates. Eighty-four percent of these fellows are from developing nations. TWAS fellows are also some of the world’s most accomplished scientists.

News Archive

UFS research could light up South African homes
2016-01-21

Reitumetse Maloa, postgraduate student and researcher at the UFS Department of Microbial, Biochemical and Food Biotechnology, is using her research to provide solutions to the energy crises in South Africa.

A young researcher at the university is searching for the solution to South Africa’s energy and electricity problems from a rather unlikely source: cow dung.

“Cow dung could help us power South Africa,” explains Reitumetse Maloa, postgraduate student and researcher at the UFS Department of Microbial, Biochemical and Food Biotechnology.

Reitumetse’s research is trying to understand how the bacteria works that is responsible for producing biogas.

“Biogas can be used for cooking, heating, lighting and powering generators and turbines to make electricity. The remaining liquid effluent can fertilise crops, as it is high in nitrogen, phosphorus and potassium.”

By using cow dung and food waste to produce biogas, we will be able to lower greenhouse gases.

Biogas is produced in a digester - an oxygen-free space in which bacteria break down or digest organic material fed into the system. This process naturally produces biogas, which is mainly a mixture of methane and carbon dioxide.

“Many countries, such as Germany and the United States, have begun generating electricity from cow dung and food waste, through a process known as biogas production. In South Africa, a number of industries, including waste-water treatment facilities and farms, have caught on to this technology, using it to generate heat and to power machines.”

Until recently the world has relied heavily on electricity derived from fossil fuels such as coal, natural gas and oil. Once these fuels have been extracted from underground reservoirs, they are treated or cleaned, transported to power plants and transformed into the electricity that will reach your house. Fossil fuels are considered a ‘dirty’ energy source which gives off greenhouse gases when burned. Those gases are the major contributing factor to climate change.

“We know very little about the interaction of the bacteria inside the biogas digester. To use biogas as a sustainable fuel source, we need to understand and describe the bacteria population and growth dynamics inside the digester to produce biogas optimally. Currently we are testing a variety of feedstock, including bran, maize and molasses, for biogas production potential, as well as optimising the conditions leading to maximum biogas production. We are also exploring the potential to use the effluent as fertiliser on local farms. The ultimate goal is to have biogas systems that will supply our university with clean energy.”


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept