Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
14 December 2020
Prof Abdon Atangana
Prof Abdon Atangana is known for his work in developing a new fractional operator used to model real-world problems arising in the fields of science, technology, and engineering. He was recently awarded the TWAS Mohammad A. Hamdan Award by The World Academy of Sciences.

Prof Abdon Atangana, Professor of Applied Mathematics in the Institute for Groundwater Studies at the University of the Free State (UFS), was awarded the TWAS Mohammad A. Hamdan Award by The World Academy of Sciences for the advancement of science in developing countries.

It is the first time that the TWAS Mohammad A. Hamdan Award was bestowed. According to a statement issued by TWAS, this award is given for outstanding mathematical work carried out by a scientist working and living in Africa or the Arab region. It states that the award can be given for work in pure mathematics, applied mathematics, probability, or statistics. Prof Atangana received the award for his contribution to fractal mathematics and partial differential equations.

Making a difference in society

He is known for his research in developing a new fractional operator, the Atangana-Baleanu operator, which is used to model real-world problems. With this operator, he not only describes the rate at which something will change, but also account for disrupting factors that will help to produce better projections.

His work can be applied to make complicated predictions in the fields of science, technology, and engineering. His models can, for instance, help to predict the spread of infectious diseases among people in a settlement, forecasting the number of people who will be infected each day, the number of people who will recover, and the number of people who will die.

Prof Atangana’s models can also help to advise people drilling for water by predicting how groundwater is flowing in a complex geological formation. These are only two examples of how his work can be applied to make a difference in society.

The award from TWAS is the third prestigious commendation he has received in the past month. He was recently named as one of the top 1% scientists on the global Clarivate Web of Science list. His name also appeared on a global list of leading scientists published by Stanford University in the United States. The list is the result of a study published in PLOS Biology, a peer-reviewed open-access journal.

World’s most accomplished scientists

Honours awarded by TWAS and its partners are among the most prestigious for research in the developing world. They recognise outstanding achievements and contributions to science and acknowledge the best work by scientists from the global South.

TWAS, founded in 1983 by a group of scientists under the leadership of Pakistani physicist and Nobel laureate, Abdus Salam, believes that developing nations – by growing strength in science and engineering – will be able to address challenges such as hunger, disease, and poverty, through their knowledge and skills.

TWAS is represented in 100 countries, and of the more than a thousand elected fellows, 14 are Nobel laureates. Eighty-four percent of these fellows are from developing nations. TWAS fellows are also some of the world’s most accomplished scientists.

News Archive

Research helps farmers save with irrigation
2017-02-15

Description: Irrigation research Tags: Irrigation research

Marcill Venter, lecturer in the Department of
Agricultural Economics at the University of the
Free State, has developed the mathematical
programming system, Soil Water Irrigation
Planning and Energy Management in order to
determine irrigation pump hours.
Photo: Rulanzen Martin

Her advice to farmers is that they should make sure they are aware of the total cost (investment and operating costs) of an irrigation system. In most cases the investment cost is low, but the operating cost over the lifetime of the system is high.

“It is very important to have a look at the total cost and to install the most economic system,” says Marcill Venter, lecturer at the University of the Free State (UFS), who has done research on the economic sustainability of water-pipe systems.

Irrigation systems important components for farming
This research comes at a time when many farmers are relying on their irrigation systems due to persistent drought and low rainfall during 2016. South Africa has also experienced an abnormal increase in electricity tariffs in recent years. Due to tariff increases which threaten the future profitability of irrigation producers, the Water Research Commission (WRC) has launched and financed a project on the sustainable management of irrigation farming systems. “I had the opportunity to work on the project as a researcher,” says Venter.

The heart of every irrigation system is the water pipes that bring life to crops and livestock, and this is what Venter’s research is about. “Water pipes are part of the whole design of irrigation systems. The design of the system impact certain factors which determine the investment and operating costs,” she says.

Mathematical system to help farmers
Venter and Professor Bennie Grové, also from the Department of Agricultural Economics at the UFS, designed the Soil Water Irrigation Planning and Energy Management (SWIP-E) programming model as part of the WRC’s project, as well as for her master’s degree. “The model determines irrigation pump hours through a daily groundwater budget, while also taking into account the time-of-use electricity tariff structure and change in kilowatt requirements arising from the main-line design,” says Venter. The model is a non-linear programming model programmed in General Algebraic Modeling System (GAMS).

Design of irrigation system important for sustainability

The main outcome of the study is that the time-of-use electricity tariff structure (Ruraflex) is always more profitable than the flat-rate structure (Landrate). The interaction between the management and design of a system is crucial, as it determines the investment and operating costs. Irrigation designers should take the investment and operating cost of a system into account during the design process. The standards set by the South African Irrigation Institute (SAII) should also be controlled and revised.

Water-pipe thickness plays major role in cost cuts
There is interaction between water-pipe thickness, investment and operating costs. When thinner water pipes are installed, it increases the friction in the system as well as the kilowatt usage. A high kilowatt increases the operating cost, but the use of thinner water pipes lowers the investment cost. Thicker water pipes therefore lower the friction and the kilowatt requirements, which leads to lower operating costs, but thicker pipes have a higher investment cost. “It is thus crucial to look at the total cost (operating and investment cost) when investing in a new system. Farmers should invest in the system with the lowest total cost,” says Venter.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept