Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 June 2020 | Story Leonie Bolleurs | Photo Supplied
Prof Arno Hugo recently participated in a session on food with integrity during a webinar by the Integra Trust, where he presented a lecture focusing on the importance of food traceability and the information communicated to the consumer.

In the complete process between farm and fork, consumers are looking for someone to hold accountable if their animal welfare, product quality, and product safety expectations are not met.

On World Sustainable Gastronomy Day earlier this month (18 June 2020), Prof Arno Hugo from the Department of Microbial, Biochemical and Food Biotechnology’s Food Science division at the University of the Free State (UFS) participated in a webinar by the Integra Trust, titled Heal the Land, Heal the People.

The Integra Trust was established to advance climate-smart sustainable and regenerative agriculture. It values the production, distribution, and utilisation of food with integrity in order to heal the land and the people.

Integra Trust strives to promote agriculture that has a limited footprint on the environment.

Prof Hugo’s lecture during the session on food with integrity, focused on the importance of the traceability of food and the information communicated to the consumer. 

Physical and emotional connectedness to farm and the producer
According to him, modern consumers want to know where their food comes from and want to be physically and emotionally connected to the farm and the producer. In the case of meat, for example, they want to know if the meat they buy is ethically produced and whether the animal was treated in a humane manner during the slaughter process. They also want a guarantee that the food they buy is free of harmful substances.

Prof Hugo states: “The consumer’s need for origin-based food is now playing out in a variety of ways, as food processors and retailers are labelling their products according to the origin of the product. One way of achieving this, is through a good traceability system.”

In his presentation, he focused on traceability from a meat industry perspective.

“Thus, in a good traceability system, a product on the store shelf can easily be traced back to the farmer and the farm where the food was originally produced. In modern traceability systems, it is even possible for the consumer to take the product in the store to a scanner that can read the ‘barcode’ and then showing a photo of the farmer and the name and location of the farm where it was produced,” explains Prof Hugo.

Food traceability important from food safety point of view
“Despite the consumer’s emotional need to connect with the farm and the producer, food traceability is also extremely important from a food security and food safety point of view,” he adds.

Although in its simplest form, it is a comprehensive process of keeping record of suppliers and customers in order to allow reconstruction of the product chain in case of need, it is doable. “In Europe, some 25 million cattle per year are now slaughtered with full traceability. The challenge of providing a secure form of identity through this process, is therefore a formidable one. This is achieved with the use of modern technologies such as Blockchain and DNA technology,” explains Prof Hugo. 

Joining him in the session on food with integrity were, among others, Errieda du Toit, chef, food writer, and culinary commentator (talking about perceptions in terms of difference between fast food and story food, asking if it is driven by social media) and Christiaan Campbell, chef and food consultant (talking about achieving synergy and communication between producer and consumer via the food value chain). Steven Barnard of Farmer Kidz presented a session focused on the younger generation, focusing on why it is important to connect children with food production.

News Archive

UFS researcher engineers metal surfaces
2015-03-03

Shaun Cronjé, a PhD student, in a surface characterisation laboratory at the UFS.

It is well known that the surface of a component is much more vulnerable to damage than the interior, and that surface-originated degradation such as wear, corrosion, and fracture will eventually destroy the component.

“Engineering the surface, based on scientific knowledge, is essential to control these damaging processes. It also creates electronic and geometric structures on the surface which opens up a world of new devices, especially considering the properties on the nano-length scale,” said Prof Wiets Roos from the Department of Physics at the University of the Free State (UFS).

At elevated temperatures, atoms are more mobile and can migrate to grain boundaries and surfaces, which have a major influence on material properties. The redistribution of solute atoms between the surface and the bulk of the material is known as segregation. Knowing the behaviour of segregation at the surface/environment interface can be very useful in the development of new materials. As an example materials can be improved higher efficiency and lower fuel consumption, thus reducing environmental pollution.

The main aims of Prof Roos’s research are to understand surface segregation, use it as a tool, and contribute to the various surface engineering fields.

The surface characterisation laboratories at the UFS are well equipped to do high temperature segregation measurements, and have already proven a success, not only in the ability to prepare the specimens for characterisation, but also in developing models and procedures to quantify the segregation parameters.

The most recent results have demonstrated the importance of taking evaporation into account during quantification.” This has laid the foundation for future studies by installing the necessary hardware in a surface characterisation spectrometer, establishing experimental protocols, and improving an existing model (developed in this laboratory) for simulating segregation profiles,” said Prof Roos.

Segregation parameters allow the researcher to predict and utilise the surface concentration behaviour as a function of temperature and time. “This not only contributes to fields involving corrosion, oxidation, sintering, wear, chemical poisoning, powder metallurgy, and lubrication but adds to the development of self-healing devices,” said Prof Roos.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept