Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 June 2020 | Story Communication and Marketing

Due to the seriousness of the global COVID-19 outbreak, the Rector and Vice-Chancellor, Prof Francis Petersen, established a Coronavirus Task Team comprising representatives from various key function areas on the University of the Free State (UFS) campuses. This includes members of the executive management, virologists, infectious disease experts, and representatives of the academic and support-service functions. The team meets frequently to discuss the contingency and preparedness plans for the university’s three campuses. 

In response to the current pandemic, the UFS has opted to postpone all graduation and related prize-giving ceremonies scheduled to take place from 20 to 24 April 2020 and 10 to 12 June 2020 on the Bloemfontein Campus,  as well as those from 8 to 9 May 2020 on the Qwaqwa Campus. We know that this was the best decision to curb the spread of the disease as far as possible.

The university acknowledges the importance of graduation ceremonies and appreciates the diligence displayed by our students. We also recognise the virtual graduation ceremonies held by other institutions to confer and award qualifications. As such, a survey was issued to the April, May, and June 2020 graduates to determine their preference between virtual and traditional ceremonies.  

We are grateful for the response to the survey, which indicated that the overwhelming majority of graduates prefer a traditional graduation ceremony. The university’s executive management subsequently resolved that a final decision regarding virtual or traditional ceremonies would be made towards the end of July or the beginning of August 2020. The university still hopes to host the graduation ceremonies on its campuses in 2020 so that we can celebrate this joyous occasion with our graduates and their families. We will continue to evaluate the decision in light of the developments related to COVID-19, as well as taking into account the national lockdown level at the time. 

We will continue to support and assist students who require confirmation of their qualification and academic records for either employment or to further their studies.  Please contact us at 051 401 9666 or studentadmin@ufs.ac.za for any enquiries about the graduation ceremonies.

News Archive

Research eradicates bacteria from avocado facility
2017-01-17

 Description: Listeria monocytogenes Tags: Listeria monocytogenes

Listeria monocytogenes as seen under an electron
microscope. The photo was taken with a transmission
electron microscope at the microscopy unit of the UFS.
Bacteriophages (lollipop-like structures) can be seen
next to the bacterial cells.
Photo: Supplied

“The aim of my project was to identify and characterise the contamination problem in an avocado-processing facility and then to find a solution,” said Dr Amy Strydom, postdoctoral fellow in the Department of Microbial Biochemical and Food Biotechnology at the University of the Free State (UFS).

Her PhD, “Control of Listeria monocytogenes in an Avocado-processing Facility”, aimed to identify and characterise the contamination problem in a facility where avocados were processed into guacamole. Dr Strydom completed her MSc in food science in 2009 at Stellenbosch University and this was the catalyst for her starting her PhD in microbiology in 2012 at the UFS. The research was conducted over a period of four years and she graduated in 2016. The research project was funded by the National Research Foundation.

The opportunity to work closely with the food industry further motivated Dr Strydom to conduct her research. The research has made a significant contribution to a food producer (avocado facility) that will sell products that are not contaminated with any pathogens. The public will then buy food that is safe for human consumption.


What is Listeria monocytogenes?

Listeria monocytogenes is a food-borne pathogenic bacterium. When a food product is contaminated with L. monocytogenes, it will not be altered in ways that are obvious to the consumer, such as taste and smell. When ingested, however, it can cause a wide range of illnesses in people with impaired immune systems. “Risk groups include newborn babies, the elderly, and people suffering from diseases that weaken their immune systems,” Dr Strydom said. The processing adjustments based on her findings resulted in decreased numbers of Listeria in the facility.

The bacteria can also survive and grow at refrigeration temperatures, making them dangerous food pathogens, organisms which can cause illnesses [in humans]. Dr Strydom worked closely with the facility and developed an in-house monitoring system by means of which the facility could test their products and the processing environment. She also evaluated bacteriophages as a biological control agent in the processing facility. Bacteriophages are viruses that can only infect specific strains of bacteria. Despite bacteriophage products specifically intended for the use of controlling L. monocytogenes being commercially available in the food industry, Dr Strydom found that only 26% of the L. monocytogenes population in the facility was destroyed by the ListexP100TM product. “I concluded that the genetic diversity of the bacteria in the facility was too high and that the bacteriophages could not be used as a control measure. However, there is much we do not understand about bacteriophages, and with a few adjustments, we might be able to use them in the food industry.”

Microbiological and molecular characterisation of L. monocytogenes

The bacteria were isolated and purified using basic microbiological culturing. Characterisation was done based on specific genes present in the bacterial genome. “I amplified these genes with polymerase chain reaction (PCR), using various primers targeting these specific genes,” Dr Strydom said. Some amplification results were analysed with a subsequent restriction digestion where the genes were cut in specific areas with enzymes to create fragments. The lengths of these fragments can be used to differentiate between strains. “I also compared the whole genomes of some of the bacterial strains.” The bacteriophages were then isolated from waste water samples at the facility using the isolated bacterial strains. “However, I was not able to isolate a bacteriophage that could infect the bacteria in the facility.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept