Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 March 2020 | Story Valentino Ndaba | Photo Charl Devenish
Education
Members of the Faculty of Education Academic Advisory Board at its inaugural meeting held on the University of the Free State’s Bloemfontein Campus.

A first of its kind for the University of the Free State (UFS), the Faculty of Education Academic Advisory Board (AAB) was inaugurated on 5 March 2020 to provide guidance on developing industry-driven academic programmes.

Chairman of the Board and Dean of the faculty, Prof Loyiso Jita, explained the relevance of the structure. “Essentially, the Board is there to provide advice to the faculty on how we can be at the top of our game, connect with practitioners out there, and give ourselves an edge both in terms of our strategic research goals as well as raising the required finance to run our programmes effectively.”

A future-focused faculty
At its first sitting on the UFS Bloemfontein Campus, the Board made recommendations which the faculty has committed to implementing. The first suggestion put forward was to align the faculty to the larger higher-learning industry and education practitioners.

Bridging the gap between the institution and these stakeholders is of utmost significance: “There is still a feeling that we universities operate as ivory towers. Everything that we do, whether it is research, engaged scholarship, or teaching, has to be anchored in the practice. It has to be designed to influence and in most cases to change the practice in our communities,” added Prof Jita.

Other key focus areas identified include science and mathematics education. Prof Jita leads the South African National Roads Agency (Sanral) Research Chair that focuses on science education in the country. In the first five years of its existence, the Chair has helped graduates achieve 28 PHDs, eight master’s degrees, and has produced 66 publications. Prof Jita revealed that the Sanral Chair has challenged itself to double these statistics in the next five years.

Childhood development
Early Childhood Development (ECD), as a development zone will be championed as recommended by the Board. According to the Dean: “We have developed a strength as a faculty in that we have been leading in curriculum development in the area of ECD and have even hosted a number of workshops for other universities.”

Subsequent to that, the faculty has also decided to shine a spotlight on literacy. A project plan is pending submission to the National Research Foundation (NRF) for funding.

Long-term sustainability
The Advisory Board made a commitment to help the faculty develop more durable partnerships with industry players instead of the usual year-to-year collaborations. Undertaking the task to develop medium- to long-term partnerships of three to five years would be helpful because that could result in more sustainable projects and funding. A progress report is expected by the Board at its follow-up meeting scheduled for November 2020. 

Why an Academic Advisory Board?
Academic Advisory Boards are established across higher-learning institutions to ensure development aligned with regional, local, and global standards. Our Faculty of Education intends to use this structure to assist in terms of strategic direction and quality assurance of curriculum development and content delivery. Generally, the establishment of active AABs seeks to ensure that graduates comply with the expectations of the workplace, curriculum relevance for industry and the inclusion of the necessary knowledge, skills and attributes graduates will need in their specific fields.

Its purpose is to also assist in formulating and achieving strategic objectives, help make the connection between academic knowledge and “real work” skills, build a list of practitioners who could serve as classroom and graduation guest speakers, and create opportunities for students to learn workplace skills by providing suitable internship locations.

The Faculty of Education’s Board consists of the chief executive officers (CEOs) from the Education, Training and Development Practices Sector Education and Training Authority (ETDP SETA); the South African Council for Educators (SACE),the National Education Collaboration Trust (NECT) and Umalusi. In addition to the CEOs are six external members, three Heads of Schools, the Programme Director for Research and Engaged Scholarship, the Assistant Dean of the faculty at the Qwaqwa Campus, the Vice-Dean, as well as the Dean. 

News Archive

Nuclear Medicine on the forefront of cancer research
2017-07-10

Description: Nuclear Medicine on the forefront of cancer research Tags: Nuclear Medicine, cancer research, Dr Je’nine Horn-Lodewyk’s, tumour detection method, cancer, Department of Nuclear Medicine 

Dr Je’nine Horn-Lodewyk’s tumour detection method
could be the cost-effective breakthrough needed to decrease
the mortality rate in breast cancer patients.
Photo: Anja Aucamp

The field of Nuclear Medicine in South Africa and the rest of the world are expanding rapidly due to the development of hybrid cameras and new radiopharmaceuticals. These developments have a huge impact on the diagnosis and therapy of cancer.

The most advanced of these cameras, Positron emission tomography combined with normal CTs (PETCT), are not yet widely available in South Africa due to the cost of the cameras and the radiopharmaceuticals. A more cost-effective alternative can be of great benefit. To achieve this, the focus should be on developing new radiopharmaceuticals that can be used with the current cost-effective gamma cameras, according to University of the Free State researcher, Dr Je’nine Horn-Lodewyk from the Department of Nuclear Medicine.

Fluorodeoxyglucose (18F-FDG), a radiolabelled glucose analogue, is currently the radiopharmaceutical most commonly used in PET/CT imaging for mainly oncology indications. Although it is considered the gold standard for imaging in several malignancies, it does have certain disadvantages. An 18F-FDG PET/CT diagnostic imaging study can cost between R25 000 and R35 000 for a single patient in the private sector. The 18F-FDG is also more radioactive, which requires much stricter handling and shielding to avoid high radiation dosages to staff and patients.

Successful research potential innovative solution
In the search for the ideal radiopharmaceutical for tumour detection, the South African National Nuclear Energy Corporation (Necsa) developed a local synthesis process for ethylenedicysteine-deoxyglucose (EC-DG). EC-DG is also a glucose analogue similar to FDG. They succeeded in labelling the compound with Technetium-99-metastable-pertechnetate (99mTcO4-), the most common nuclear medicine isotope used for approximately 95% of nuclear medicine procedures, creating 99mTc-EC-DG.

In partnership with Dr Horn-Lodewyk, this compound was successfully used in various animal models and clinical scenarios, resulting in approval by the Medicine Control Council to use it in a human study. Research is also planned in order to investigate diagnostic accuracy in other cancers like lymphoma.  The end result of this research can produce a radiopharmaceutical that is cost effective, does not require the use of costly specialised equipment, has no significant side-effects, no special patient preparation, renders late imaging possible, and has decreased radiation risks.

Dr Horn-Lodewyk is grateful for the support of her mentor, Prof Anton Otto, as well as Dr Gert Engelbrecht, Head of the Department of Nuclear Medicine, Prof Jan Rijn Zeevaart from North-West University’s Preclinical Drug Development Platform and Necsa, and Judith Wagener from Necsa. This innovative research would also not have been possible without the financial assistance of Dr Glen Taylor and Eleanor van der Westhuizen in the Directorate of Research Development.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept