Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
06 March 2020 | Story Igno van Niekerk | Photo Igno van Niekerk
 Gert Marais looking at pecan leave_
Dr Gert Marais says the UFS is helping to ensure that the pecan industry not only survives but thrives.

“When opportunity knocks, you must jump. The more opportunity knocks, the more you should jump.” 

Look closely, and you will notice the rise in pecan-nut plantations as you travel through South Africa. Do not be surprised if you find that the UFS’s pecan-nut project – steered by Dr Gert Marais, Senior Lecturer in the Department of Plant Sciences – is associated with those pecans.

Main exporter
In an ever expanding and interconnected global economy, South Africa has joined the USA as main exporters of pecan nuts to China. We have several advantages; our seasons differ from that of the USA, and we have the benefit that we are harvesting and exporting pecan nuts at the time when they are most popular at Chinese festivals and events.

Although it takes a long time to grow pecan trees (seven to eight years before they start producing), the long wait has extensive benefits. Dr Marias explains: “Unlike other crops, you do not have to prepare the soil and plant new crops annually. Rather than re-investing, you only need to do proper maintenance. Once planted, the pecan trees can produce for generations to come. And the UFS is involved in ensuring that the pecan industry not only survives but thrives.”

Empowering farmers
As the pecan industry in South Africa grows, new challenges are identified. Some trees suffer from a condition called overall decline, others from scab, and some others are infested by combinations of fungi not found in other countries. Dr Marais and his team have filed several ‘first reports’ of combinations between pecans and pathogens, leading to opportunities for MSc research projects and making a difference in the industry.

Dr Marais undertakes six field trips per year to visit all the production areas in South Africa, share information at farmer’s days, arrange courses to ensure best practices with regard to pecan cultivation; students also use these visits to collect samples for their research. Due to the systemic collaboration between the private sector and the university, farmers are empowered to manage their pecan crops better, the university benefits from cutting-edge research, and South Africa becomes a stronger player in the international economy.

Opportunity is knocking. And the UFS is jumping.

News Archive

UFS study on cell development in top international science journal
2008-09-16

A study from the University of the Free State (UFS) on how the change in the packaging of DNA with cell development influenced the expression of genes, will be published in this week’s early edition of the prestigious international, peer-reviewed science journal, the Proceeding of the National Academy of Sciences of the USA (PNAS).

The PNAS journal has an impact factor of 10, which means that studies published in the journal are, on average, referred to by ten other scientific studies in a two year period. The South African Journal of Science, by comparison, has an impact factor of 0.7.

The UFS study, funded by the Wellcome Trust and the National Research Foundation (NRF), looked at how the change in the packaging of DNA with cell development influenced the expression of genes. It is very relevant to research on stem cells, an area of medicine that studies the possible use of undifferentiated cells to replace damaged tissue.

Prof. Hugh Patterton, of the Department of Microbial, Biochemical and Food Biotechnology at the UFS, who led the study, said: "We are extremely proud of this study. It was conceived in South Africa, it was performed in South Africa, the data were analysed in South Africa, and it was published from South Africa."

When a gene is expressed, the information encoded in the gene is used to manufacture a specific protein. In eukaryotes, which include humans, there is approximately 1m of DNA, containing the genes, in every cell. This length of DNA has to fit into a cell nucleus with a diameter of only about 10 micrometer. In order to fit the DNA into such a small volume, eukaryotic cells wrap their DNA onto successive protein balls, termed nucleosomes. Strings of nucleosomes, resembling a bead of pearls, is folded into a helix to form a chromatin fiber. The study from the UFS investigated how the binding of a specific protein, termed a linker histone, that binds to the length of DNA between nucleosomes, influenced the formation of the chromatin fiber and also the activity of genes.

"We found that the linker histone bound to chromatin in yeast, which we use as a model eukaryote, under conditions where virtually all the genes in the organism were inactive. It was widely believed that the binding of the linker histone caused the inactivation of genes. We studied the relationship between the amount of linker histone bound in the vicinity of each gene and the expression of that gene for all the genes in yeast, using genomic techniques. We made the surprising discovery that even through the linker histone preferentially bound to genes under conditions where the genes were shut off, this inactivation of genes was not caused by the binding of the linker histone and folding of the chromatin,” said Prof. Patterton.

He said: “Instead our data strongly suggested that the observed anti-correlation was due to the movement of enzymes along the DNA molecule, involved in processing the information in genes for the eventual manufacture of proteins. This movement of enzymes displaced the linker histones from the DNA. This finding now requires a rethink on aspects of how packaging of DNA influences gene activity."

Prof. Patterton said that his research group, using the Facility for Genomics and Proteomics as well as the Bioinformatics Node at the UFS, was currently busy with follow-up studies to understand how other proteins in nucleosomes affected the activities of genes, as well as with projects to understand how chemicals found in red wine and in green tea extended lifespan. "We are certainly having a marvelous time trying to understand the fundamental mechanisms of life, and the UFS is an exciting place to be if one was interested in studying life at the level of molecules," he said.


Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
18 September 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept