Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
06 March 2020 | Story Igno van Niekerk | Photo Igno van Niekerk
 Gert Marais looking at pecan leave_
Dr Gert Marais says the UFS is helping to ensure that the pecan industry not only survives but thrives.

“When opportunity knocks, you must jump. The more opportunity knocks, the more you should jump.” 

Look closely, and you will notice the rise in pecan-nut plantations as you travel through South Africa. Do not be surprised if you find that the UFS’s pecan-nut project – steered by Dr Gert Marais, Senior Lecturer in the Department of Plant Sciences – is associated with those pecans.

Main exporter
In an ever expanding and interconnected global economy, South Africa has joined the USA as main exporters of pecan nuts to China. We have several advantages; our seasons differ from that of the USA, and we have the benefit that we are harvesting and exporting pecan nuts at the time when they are most popular at Chinese festivals and events.

Although it takes a long time to grow pecan trees (seven to eight years before they start producing), the long wait has extensive benefits. Dr Marias explains: “Unlike other crops, you do not have to prepare the soil and plant new crops annually. Rather than re-investing, you only need to do proper maintenance. Once planted, the pecan trees can produce for generations to come. And the UFS is involved in ensuring that the pecan industry not only survives but thrives.”

Empowering farmers
As the pecan industry in South Africa grows, new challenges are identified. Some trees suffer from a condition called overall decline, others from scab, and some others are infested by combinations of fungi not found in other countries. Dr Marais and his team have filed several ‘first reports’ of combinations between pecans and pathogens, leading to opportunities for MSc research projects and making a difference in the industry.

Dr Marais undertakes six field trips per year to visit all the production areas in South Africa, share information at farmer’s days, arrange courses to ensure best practices with regard to pecan cultivation; students also use these visits to collect samples for their research. Due to the systemic collaboration between the private sector and the university, farmers are empowered to manage their pecan crops better, the university benefits from cutting-edge research, and South Africa becomes a stronger player in the international economy.

Opportunity is knocking. And the UFS is jumping.

News Archive

Research eradicates bacteria from avocado facility
2017-01-17

 Description: Listeria monocytogenes Tags: Listeria monocytogenes

Listeria monocytogenes as seen under an electron
microscope. The photo was taken with a transmission
electron microscope at the microscopy unit of the UFS.
Bacteriophages (lollipop-like structures) can be seen
next to the bacterial cells.
Photo: Supplied

“The aim of my project was to identify and characterise the contamination problem in an avocado-processing facility and then to find a solution,” said Dr Amy Strydom, postdoctoral fellow in the Department of Microbial Biochemical and Food Biotechnology at the University of the Free State (UFS).

Her PhD, “Control of Listeria monocytogenes in an Avocado-processing Facility”, aimed to identify and characterise the contamination problem in a facility where avocados were processed into guacamole. Dr Strydom completed her MSc in food science in 2009 at Stellenbosch University and this was the catalyst for her starting her PhD in microbiology in 2012 at the UFS. The research was conducted over a period of four years and she graduated in 2016. The research project was funded by the National Research Foundation.

The opportunity to work closely with the food industry further motivated Dr Strydom to conduct her research. The research has made a significant contribution to a food producer (avocado facility) that will sell products that are not contaminated with any pathogens. The public will then buy food that is safe for human consumption.


What is Listeria monocytogenes?

Listeria monocytogenes is a food-borne pathogenic bacterium. When a food product is contaminated with L. monocytogenes, it will not be altered in ways that are obvious to the consumer, such as taste and smell. When ingested, however, it can cause a wide range of illnesses in people with impaired immune systems. “Risk groups include newborn babies, the elderly, and people suffering from diseases that weaken their immune systems,” Dr Strydom said. The processing adjustments based on her findings resulted in decreased numbers of Listeria in the facility.

The bacteria can also survive and grow at refrigeration temperatures, making them dangerous food pathogens, organisms which can cause illnesses [in humans]. Dr Strydom worked closely with the facility and developed an in-house monitoring system by means of which the facility could test their products and the processing environment. She also evaluated bacteriophages as a biological control agent in the processing facility. Bacteriophages are viruses that can only infect specific strains of bacteria. Despite bacteriophage products specifically intended for the use of controlling L. monocytogenes being commercially available in the food industry, Dr Strydom found that only 26% of the L. monocytogenes population in the facility was destroyed by the ListexP100TM product. “I concluded that the genetic diversity of the bacteria in the facility was too high and that the bacteriophages could not be used as a control measure. However, there is much we do not understand about bacteriophages, and with a few adjustments, we might be able to use them in the food industry.”

Microbiological and molecular characterisation of L. monocytogenes

The bacteria were isolated and purified using basic microbiological culturing. Characterisation was done based on specific genes present in the bacterial genome. “I amplified these genes with polymerase chain reaction (PCR), using various primers targeting these specific genes,” Dr Strydom said. Some amplification results were analysed with a subsequent restriction digestion where the genes were cut in specific areas with enzymes to create fragments. The lengths of these fragments can be used to differentiate between strains. “I also compared the whole genomes of some of the bacterial strains.” The bacteriophages were then isolated from waste water samples at the facility using the isolated bacterial strains. “However, I was not able to isolate a bacteriophage that could infect the bacteria in the facility.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept