Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
06 March 2020 | Story Igno van Niekerk | Photo Igno van Niekerk
 Gert Marais looking at pecan leave_
Dr Gert Marais says the UFS is helping to ensure that the pecan industry not only survives but thrives.

“When opportunity knocks, you must jump. The more opportunity knocks, the more you should jump.” 

Look closely, and you will notice the rise in pecan-nut plantations as you travel through South Africa. Do not be surprised if you find that the UFS’s pecan-nut project – steered by Dr Gert Marais, Senior Lecturer in the Department of Plant Sciences – is associated with those pecans.

Main exporter
In an ever expanding and interconnected global economy, South Africa has joined the USA as main exporters of pecan nuts to China. We have several advantages; our seasons differ from that of the USA, and we have the benefit that we are harvesting and exporting pecan nuts at the time when they are most popular at Chinese festivals and events.

Although it takes a long time to grow pecan trees (seven to eight years before they start producing), the long wait has extensive benefits. Dr Marias explains: “Unlike other crops, you do not have to prepare the soil and plant new crops annually. Rather than re-investing, you only need to do proper maintenance. Once planted, the pecan trees can produce for generations to come. And the UFS is involved in ensuring that the pecan industry not only survives but thrives.”

Empowering farmers
As the pecan industry in South Africa grows, new challenges are identified. Some trees suffer from a condition called overall decline, others from scab, and some others are infested by combinations of fungi not found in other countries. Dr Marais and his team have filed several ‘first reports’ of combinations between pecans and pathogens, leading to opportunities for MSc research projects and making a difference in the industry.

Dr Marais undertakes six field trips per year to visit all the production areas in South Africa, share information at farmer’s days, arrange courses to ensure best practices with regard to pecan cultivation; students also use these visits to collect samples for their research. Due to the systemic collaboration between the private sector and the university, farmers are empowered to manage their pecan crops better, the university benefits from cutting-edge research, and South Africa becomes a stronger player in the international economy.

Opportunity is knocking. And the UFS is jumping.

News Archive

Discovery in Scorpius constellation may signify clean energy for Earth
2017-01-23

 Description: Discovery in Scorpius constellation may signify clean energy for Earth Tags: Discovery in Scorpius constellation may signify clean energy for Earth

Earlier this year, a group of international astronomers
announced the discovery of an exotic binary star system,
AR Scorpii. The system is in the Scorpius constellation.
Photos: Supplied

See article on Nature’s website 

In future, stargazers and astronomers will look at the Scorpius constellation near the Milky Way with new eyes. Earlier this year, a group of international astronomers announced the discovery of an exotic binary star system, AR Scorpii. The system is in the Scorpius constellation.

Prof Pieter Meintjes, researcher in the Department of Physics at the University of the Free State (UFS), worked with four colleagues on what he describes as a “wonderful discovery”. This sensational discovery, which could lead to the production of cleaner energy on Earth, will be published in the research journal, Nature, early in 2017.

Model developed to interpret new set of measurements
The exotic binary star which was discovered consists of a red dwarf and a white dwarf revolving around each other every 3,5 hours. The binary system showed very prominent pulsations of 117 and 118 seconds respectively. The pulsations can be explained by a bundle radiation produced by the white dwarf star.

“These new observations have shown that the radiation is strongly polarised, a sign that we are dealing with synchrotron radiation here. Synchrotron radiation is produced by electrons accelerated to extremely high energy levels in the magnetic field of the white dwarf star,” says Prof Meintjes.

He developed a theoretical model to interpret a new set of measurements that was taken by the 1,9 m telescope and the 10 m SALT telescope at the South African Astronomical Observatory (SAA0).

Totally unique phenomenon could contribute to energy production on Earth
“I further indicated that the interaction between the magnetic fields of the white dwarf star and the red dwarf star induces secondary processes that specifically describe the behaviour of the radiation in the radio band and infrared band accurately. AR Sco is the first white-red dwarf binary system of which all the pulsated radiation could be explained by the synchrotron process, which is totally unique,” says Prof Meintjes.

According to Prof Meintjes, the value of the model lies in the fact that the processes which produce the radiation in AR Sco, can also be applied to produce energy on Earth.

 

Plasma reactors are based on roughly the same processes which apply in AR Sco, and with refining, it could be utilised to generate electricity in future. This will be much cleaner than nuclear energy.

 

The model developed by Prof Meintjes explains all the radiation in the system – from radio waves to X-rays – in terms of electrons accelerated to extremely high energy levels by electric fields in the system, which then produce synchrotron radiation over a very wide band of the electromagnetic spectrum.

Prof Meintjes is currently working on a follow-up article examining the evolution of the AR Sco, in other words, the origin of such a unique system and the final state towards which it is evolving. “My vision for the immediate future is therefore to develop a model for the evolution of the source concerned,” he says.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept