Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
13 October 2020 | Story Prof John Mubangizi | Photo Sonia du Toit
Prof John C Mubangizi is Dean: Faculty of Law, University of the Free State.

South Africans are sick and tired of corruption. They are angry, frustrated and despondent. And they have every reason to be. South Africa has many problems: crime, unemployment, poverty, gender-based violence, inequality, low economic growth and now – in common with many other countries – COVID-19. The list goes on and on. What makes corruption the biggest threat among all these is that it cuts across all of them and impacts on their gravity in different ways. 

The South African Constitution envisages a society based on democratic values, social justice and fundamental human rights. The way things are going, that society is never likely to happen. That is because corruption has been, and continues to be, the greatest threat to any possibility of realising that constitutional dream. In South Africa, like everywhere else where corruption is rampant, it occurs both in the public and private sectors, where it affects democracy and human rights by deteriorating institutions and diminishing public trust in government. It impairs the ability of government to fulfil its obligations and ensure accountability in the delivery of economic and social services like healthcare, education, clean water, housing, and social security. This is because corruption diverts funds into private pockets – which impedes delivery of services – thereby perpetuating poverty, inequality, injustice and unfairness. The problem is aggravated when government is the main culprit. “Government” here, of course, refers to the dictionary meaning of the term, namely, “the group of people with the authority to govern a country or state”.

Corruption existed in ancient Egypt, China and Greece

There are those who argue that corruption is as old as mankind and, therefore, it is here to stay. Indeed, corruption is known to have existed in ancient Egypt, ancient China and ancient Greece. In Robert Bolt’s 16th Century play A Man for All Seasons, Richard Rich’s opening remark is “But every man has his price.” In the 1836 play The Government Inspector, Nikolai Gogol cleverly satirised the human greed, stupidity and extensive political corruption in Imperial Russia at the time. And in a recent article in The Conversation (28 August 2020), Steven Friedman wonders why South Africans express shock at corruption when “it is perhaps the country’s oldest tradition.” He locates the advent of corruption in South Africa at the arrival of Jan van Riebeeck in 1652, through to the ensuing colonialism and apartheid. He argues that in reality, “corruption has been a constant feature of South African political life for much of the past 350 years. It is deeply embedded and it will take a concerted effort, over years, not days, to defeat it”. 

Agreed, but does it have to be that way? At the time of Jan van Riebeeck and during the 350 years of colonialism and apartheid, we did not have the legal framework that we have now. Here is a brief overview of that framework.

Read full article here

Opinion article by Professor John C Mubangizi, Dean: Faculty of Law, University of the Free State


News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept