Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 October 2020 | Story Andre Damons
Prof Ivan Turok
Prof Ivan Turok, National Research Foundation research professor at the University of the Free State (UFS) and distinguished research fellow at the Human Sciences Research Council (HSRC).

New evidence provides a detailed picture of the extraordinary economic fallout from the COVID-19 pandemic. All regions lost about a fifth of their jobs between February-April, although the cities began to show signs of recovery with the easing of the lockdown to level 3. Half of all adults in rural areas were unemployed by June, compared with a third in the metros. So the crisis has amplified pre-existing disparities between cities and rural areas.

Prof Ivan Turok, National Research Foundation research professor at the University of the Free State (UFS) and distinguished research fellow at the Human Sciences Research Council (HSRC), and Dr Justin Visagie, a research specialist with the HSRC, analysed the impact of the crisis on different locations in a research report (Visagie & Turok 2020).

The main conclusion is that government responses need to be targeted more carefully to the distinctive challenges and opportunities of different places. A uniform, nationwide approach that treats places equally will not narrow (or even maintain) the gaps between them, just as the blanket lockdown reflex had adverse unintended consequences for jobs and livelihoods.

According to the authors, the crisis has also enlarged the chasm between suburbs, townships and informal settlements within cities. More than a third of all shack dwellers (36%) lost their jobs between February and April, compared with a quarter (24%) in the townships and one in seven (14%) in the suburbs. These effects are unprecedented.

Government grants have helped to ameliorate hardship in poor communities, but premature withdrawal of temporary relief schemes would be a serious setback for people who have come to rely on these resources following the collapse of jobs, such as unemployed men.

Before COVID-19

In February 2020, the proportion of adults in paid employment in the metros was 57%. In smaller cities and towns it was 46% and in rural areas 42%. This was a big gap, reflecting the relatively fragile local economies outside the large cities.
Similar differences existed within urban areas. The proportion of adults living in the suburbs who were in paid employment was 58%. In the townships it was 51% and in peri-urban areas it was 45%.

These employment disparities were partly offset by cash transfers to alleviate poverty among children and pensioners. Social grants were the main source of income for more than half of rural households and were also important in townships and informal settlements, although not to the same extent as in rural areas.  

Despite the social grants, households in rural areas were still far more likely to run out of money to buy food than in the cities.

How did the lockdown affect jobs?

The hard lockdown haemorrhaged jobs and incomes everywhere. However, the effects were worse in some places than in others. Shack dwellers were particularly vulnerable to the level 5 lockdown and restrictions on informal enterprise. This magnified pre-existing divides between suburbs, townships and informal settlements within cities.
There appears to have been a slight recovery in the suburbs between April-June, mostly as a result of furloughed workers being brought back onto the payroll. Few new jobs were created. Other areas showed less signs of bouncing back.

Overall, the economic crisis has hit poor urban communities much harder than the suburbs, resulting in a rate of unemployment in June of 42-43% in townships and informal settlements compared with 24% in the suburbs. The collapse poses a massive challenge for the recovery, and requires the government to mobilise resources from the whole of society.


News Archive

UFS study on cell development in top international science journal
2008-09-16

A study from the University of the Free State (UFS) on how the change in the packaging of DNA with cell development influenced the expression of genes, will be published in this week’s early edition of the prestigious international, peer-reviewed science journal, the Proceeding of the National Academy of Sciences of the USA (PNAS).

The PNAS journal has an impact factor of 10, which means that studies published in the journal are, on average, referred to by ten other scientific studies in a two year period. The South African Journal of Science, by comparison, has an impact factor of 0.7.

The UFS study, funded by the Wellcome Trust and the National Research Foundation (NRF), looked at how the change in the packaging of DNA with cell development influenced the expression of genes. It is very relevant to research on stem cells, an area of medicine that studies the possible use of undifferentiated cells to replace damaged tissue.

Prof. Hugh Patterton, of the Department of Microbial, Biochemical and Food Biotechnology at the UFS, who led the study, said: "We are extremely proud of this study. It was conceived in South Africa, it was performed in South Africa, the data were analysed in South Africa, and it was published from South Africa."

When a gene is expressed, the information encoded in the gene is used to manufacture a specific protein. In eukaryotes, which include humans, there is approximately 1m of DNA, containing the genes, in every cell. This length of DNA has to fit into a cell nucleus with a diameter of only about 10 micrometer. In order to fit the DNA into such a small volume, eukaryotic cells wrap their DNA onto successive protein balls, termed nucleosomes. Strings of nucleosomes, resembling a bead of pearls, is folded into a helix to form a chromatin fiber. The study from the UFS investigated how the binding of a specific protein, termed a linker histone, that binds to the length of DNA between nucleosomes, influenced the formation of the chromatin fiber and also the activity of genes.

"We found that the linker histone bound to chromatin in yeast, which we use as a model eukaryote, under conditions where virtually all the genes in the organism were inactive. It was widely believed that the binding of the linker histone caused the inactivation of genes. We studied the relationship between the amount of linker histone bound in the vicinity of each gene and the expression of that gene for all the genes in yeast, using genomic techniques. We made the surprising discovery that even through the linker histone preferentially bound to genes under conditions where the genes were shut off, this inactivation of genes was not caused by the binding of the linker histone and folding of the chromatin,” said Prof. Patterton.

He said: “Instead our data strongly suggested that the observed anti-correlation was due to the movement of enzymes along the DNA molecule, involved in processing the information in genes for the eventual manufacture of proteins. This movement of enzymes displaced the linker histones from the DNA. This finding now requires a rethink on aspects of how packaging of DNA influences gene activity."

Prof. Patterton said that his research group, using the Facility for Genomics and Proteomics as well as the Bioinformatics Node at the UFS, was currently busy with follow-up studies to understand how other proteins in nucleosomes affected the activities of genes, as well as with projects to understand how chemicals found in red wine and in green tea extended lifespan. "We are certainly having a marvelous time trying to understand the fundamental mechanisms of life, and the UFS is an exciting place to be if one was interested in studying life at the level of molecules," he said.


Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
18 September 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept