Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 October 2020 | Story Andre Damons
Prof Ivan Turok
Prof Ivan Turok, National Research Foundation research professor at the University of the Free State (UFS) and distinguished research fellow at the Human Sciences Research Council (HSRC).

New evidence provides a detailed picture of the extraordinary economic fallout from the COVID-19 pandemic. All regions lost about a fifth of their jobs between February-April, although the cities began to show signs of recovery with the easing of the lockdown to level 3. Half of all adults in rural areas were unemployed by June, compared with a third in the metros. So the crisis has amplified pre-existing disparities between cities and rural areas.

Prof Ivan Turok, National Research Foundation research professor at the University of the Free State (UFS) and distinguished research fellow at the Human Sciences Research Council (HSRC), and Dr Justin Visagie, a research specialist with the HSRC, analysed the impact of the crisis on different locations in a research report (Visagie & Turok 2020).

The main conclusion is that government responses need to be targeted more carefully to the distinctive challenges and opportunities of different places. A uniform, nationwide approach that treats places equally will not narrow (or even maintain) the gaps between them, just as the blanket lockdown reflex had adverse unintended consequences for jobs and livelihoods.

According to the authors, the crisis has also enlarged the chasm between suburbs, townships and informal settlements within cities. More than a third of all shack dwellers (36%) lost their jobs between February and April, compared with a quarter (24%) in the townships and one in seven (14%) in the suburbs. These effects are unprecedented.

Government grants have helped to ameliorate hardship in poor communities, but premature withdrawal of temporary relief schemes would be a serious setback for people who have come to rely on these resources following the collapse of jobs, such as unemployed men.

Before COVID-19

In February 2020, the proportion of adults in paid employment in the metros was 57%. In smaller cities and towns it was 46% and in rural areas 42%. This was a big gap, reflecting the relatively fragile local economies outside the large cities.
Similar differences existed within urban areas. The proportion of adults living in the suburbs who were in paid employment was 58%. In the townships it was 51% and in peri-urban areas it was 45%.

These employment disparities were partly offset by cash transfers to alleviate poverty among children and pensioners. Social grants were the main source of income for more than half of rural households and were also important in townships and informal settlements, although not to the same extent as in rural areas.  

Despite the social grants, households in rural areas were still far more likely to run out of money to buy food than in the cities.

How did the lockdown affect jobs?

The hard lockdown haemorrhaged jobs and incomes everywhere. However, the effects were worse in some places than in others. Shack dwellers were particularly vulnerable to the level 5 lockdown and restrictions on informal enterprise. This magnified pre-existing divides between suburbs, townships and informal settlements within cities.
There appears to have been a slight recovery in the suburbs between April-June, mostly as a result of furloughed workers being brought back onto the payroll. Few new jobs were created. Other areas showed less signs of bouncing back.

Overall, the economic crisis has hit poor urban communities much harder than the suburbs, resulting in a rate of unemployment in June of 42-43% in townships and informal settlements compared with 24% in the suburbs. The collapse poses a massive challenge for the recovery, and requires the government to mobilise resources from the whole of society.


News Archive

Studies to reveal correlation between terrain, energy use, and giraffe locomotion
2016-11-18



More than half of giraffes in captivity in Europe are afflicted by lameness. This high prevalence represents an important welfare issue, similar to other large zoo animals.

According to Dr Chris Basu, a veterinarian at the Royal Veterinary College in the UK, giraffes in captivity are often afflicted by overgrown hooves, laminitis and joint problems. Diagnosis and treatment is limited by our understanding of anatomy and function, more specifically the locomotion of these animals. Although the giraffe is such a well-known and iconic animal, relatively little has been studied about their locomotor behaviour.

Dr Basu recently visited South Africa to do fieldwork on the locomotion of giraffes as part of his PhD studies under the mentorship of world-renowned Professor of Evolutionary Biomechanics, Prof John Hutchinson. This project is a joint venture between Dr Basu and Dr Francois Deacon, researcher in the Department of Animal, Wildlife, and Grassland Sciences at the UFS. Dr Deacon is a specialist in giraffe habitat-related research. 

Together Prof Hutchinson and Drs Deacon and Basu form a research group, working on studies about giraffe locomotion.

Wild giraffe population decrease by 40% in past decade

“Locomotion is one of the most common animal behaviours and comes with a significant daily energetic cost. Studying locomotion of wild animals aids us in making estimates of this energetic cost. Such estimates are useful in understanding how giraffes fit into ecosystems. Future conservation efforts will be influenced by knowledge of the energy demands in giraffes.

“Understanding aspects of giraffe locomotion also helps us to understand the relationships between anatomy, function and evolution. This is relevant to our basic understanding of the natural world, as well as to conservation and veterinary issues,” said Dr Deacon.

Locomotion study brings strategy for specialist foot care

On face value it seems as if foot disease pathologies are more common in zoo giraffes than in wild giraffes. “However, we need a good sample of data from both populations to prove this assumption,” said Dr Basu. 

This phenomenon is not well understood at the moment, but it’s thought that diet, substrate (e.g. concrete, straw, sand and grass) and genetics play a part in foot disease in giraffes. “Understanding how the feet are mechanically loaded during common activities (standing, walking, running) gives our research group ideas of where the highest strains occur, and later how these can be reduced through corrective foot trimming,” said Dr Basu.

Through the studies on giraffe locomotion, the research group plans to devise strategies for corrective foot trimming. At the moment, foot trimming is done with the best evidence available, which is extrapolation from closely related animals such as cattle. “But we know that giraffes’ specialist anatomy will likely demand specialist foot care,” Dr Basu said.

Studying giraffes in smaller versus larger spaces

The research group has begun to study the biomechanics of giraffe walking by looking at the kinematics (the movement) and the kinetics (the forces involved in movement) during walking strides. For this he studied adult giraffes at three zoological parks in the UK. 

However, due to the close proximity of fencing and buildings, it is not practical to study fast speeds in a zoo setting. 

A setting such as the Willem Pretorius Nature Reserve, near Ventersburg in the Free State, Kwaggafontein Nature Reserve, near Colesberg in the Karoo, and the Woodland Hills Wildlife Estate in Bloemfontein are all ideal for studying crucial aspects such as “faster than walking” speeds and gaits to measure key parameters (such as stride length, step frequency and stride duration). These studies are important to understand how giraffe form and function are adapted to their full range of locomotor behaviours. It also helps to comprehend the limits on athletic capacity in giraffes and how these compare to other animals. 

Drones open up unique opportunities for studying giraffes

The increasing availability of unmanned aerial vehicles (UAVs)/drones opens up unique opportunities for studying locomotion in animals like giraffes. Cameras mounted onto remotely controlled UAVs are a straightforward way to obtain high-quality video footage of giraffes while they run at different speeds.

“Using two UAVs, we have collected high definition slow motion video footage of galloping giraffes from three locations in the Free State. We have also collected detailed information about the terrain that the giraffes walked and ran across. From this we have created 3D maps of the ground. These maps will be used to examine the preferred terrain types for giraffes, and to see how different terrains affect their locomotion and energy use,” said Dr Deacon.

“The raw data (videos) will be digitised to obtain the stride parameters and limb angles of the animals. Later this will be combined with anatomical data and an estimation of limb forces to estimate the power output of the limbs and how that changes between different terrains,” said Dr Basu.


Related articles:

23 August 2016: Research on locomotion of giraffes valuable for conservation of this species
9 March 2016:Giraffe research broadcast on National Geographic channel
18 Sept 2015 Researchers reach out across continents in giraffe research
29 May 2015: Researchers international leaders in satellite tracking in the wildlife environment

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept