Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
08 September 2020 | Story Leonie Bolleurs | Photo Falko Buschke
Dr Falko Buschke says the iconic sandstone cliffs of the eastern Free State are key to protecting wild plants and animals from climate change.

The iconic sandstone cliffs of the eastern Free State are often the focus of paintings and postcards. Now, new research shows they also protect wild plants and animals from climate change. This finding is the outcome of a collaborative research effort by the University of the Free State (UFS); BirdLife South Africa; the Vrije Universiteit Brussel and KU Leuven, Belgium, which has recently been published in the journal Biological Conservation.

Mountains key for climate change mitigation

The study, led by Dr Falko Buschke from the Centre for Environmental Management UFS, used satellite data from NASA to track the ecological effects of wet and dry seasons, including the record drought of 2015/16. This showed how vegetation on the cool and moist mountain slopes was less affected by dry spells.

The complex physical terrain allows moisture to accumulate in the shaded parts of the south-facing slopes and ravines. This creates cool and moist habitats for plants and animals that wouldn’t survive in the rest of the hotter and drier landscape.

The team also discovered that these positive effects of mountains do not end at the foot of the mountain, but extend at least 500m into the flatter lowlands. “Presumably because water and nutrients accumulate in these surrounding buffers due to run-off,” says Dr Buschke.

Butterflies find safety on mountains

In addition to their high-tech analysis of the area, the team also relied on old-fashioned fieldwork to monitor butterflies over two years. “The data showed us how these insects find safety on mountains during harsh climate conditions and can then recolonise the rest of the landscape after conditions improve,” explains Dr Buschke. “This gives us clues on the best way to protect nature,” he adds. 

This study took place in the Rooiberge-Riemland Key Biodiversity Area (KBA), an area significant for maintaining global biodiversity. Several species of insects, reptiles, birds and mammals here occur nowhere else on earth. “If they disappear here, they will go extinct from the whole planet forever,” says Dr Falko Buschke. 

Despite its ecological significance, most of the area is covered by commercial farmland. So, the next stage of the project is exploring ways of protecting these important habitats while ensuring that farmers can continue producing food and supporting rural livelihoods. 

Farmers hold the key to preserving biodiversity,” says Dr Buschke, “so conservation scientists need to work closely with them to ensure that we protect species for future generations.” 

News Archive

UFS study on cell development in top international science journal
2008-09-16

A study from the University of the Free State (UFS) on how the change in the packaging of DNA with cell development influenced the expression of genes, will be published in this week’s early edition of the prestigious international, peer-reviewed science journal, the Proceeding of the National Academy of Sciences of the USA (PNAS).

The PNAS journal has an impact factor of 10, which means that studies published in the journal are, on average, referred to by ten other scientific studies in a two year period. The South African Journal of Science, by comparison, has an impact factor of 0.7.

The UFS study, funded by the Wellcome Trust and the National Research Foundation (NRF), looked at how the change in the packaging of DNA with cell development influenced the expression of genes. It is very relevant to research on stem cells, an area of medicine that studies the possible use of undifferentiated cells to replace damaged tissue.

Prof. Hugh Patterton, of the Department of Microbial, Biochemical and Food Biotechnology at the UFS, who led the study, said: "We are extremely proud of this study. It was conceived in South Africa, it was performed in South Africa, the data were analysed in South Africa, and it was published from South Africa."

When a gene is expressed, the information encoded in the gene is used to manufacture a specific protein. In eukaryotes, which include humans, there is approximately 1m of DNA, containing the genes, in every cell. This length of DNA has to fit into a cell nucleus with a diameter of only about 10 micrometer. In order to fit the DNA into such a small volume, eukaryotic cells wrap their DNA onto successive protein balls, termed nucleosomes. Strings of nucleosomes, resembling a bead of pearls, is folded into a helix to form a chromatin fiber. The study from the UFS investigated how the binding of a specific protein, termed a linker histone, that binds to the length of DNA between nucleosomes, influenced the formation of the chromatin fiber and also the activity of genes.

"We found that the linker histone bound to chromatin in yeast, which we use as a model eukaryote, under conditions where virtually all the genes in the organism were inactive. It was widely believed that the binding of the linker histone caused the inactivation of genes. We studied the relationship between the amount of linker histone bound in the vicinity of each gene and the expression of that gene for all the genes in yeast, using genomic techniques. We made the surprising discovery that even through the linker histone preferentially bound to genes under conditions where the genes were shut off, this inactivation of genes was not caused by the binding of the linker histone and folding of the chromatin,” said Prof. Patterton.

He said: “Instead our data strongly suggested that the observed anti-correlation was due to the movement of enzymes along the DNA molecule, involved in processing the information in genes for the eventual manufacture of proteins. This movement of enzymes displaced the linker histones from the DNA. This finding now requires a rethink on aspects of how packaging of DNA influences gene activity."

Prof. Patterton said that his research group, using the Facility for Genomics and Proteomics as well as the Bioinformatics Node at the UFS, was currently busy with follow-up studies to understand how other proteins in nucleosomes affected the activities of genes, as well as with projects to understand how chemicals found in red wine and in green tea extended lifespan. "We are certainly having a marvelous time trying to understand the fundamental mechanisms of life, and the UFS is an exciting place to be if one was interested in studying life at the level of molecules," he said.


Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
18 September 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept