Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 September 2020 | Story Prof Felicity Burt | Photo Supplied
Prof Felicity Burt in front of the new state-of-the-art biosafety Level (BSL) 3 laboratory.

The University of the Free State’s (UFS) new biosafety Level (BSL) 3 laboratory will allow the university’s world-respected researchers to further advance their research on and surveillance of infectious pathogens, with the ultimate benefit being the improved quality of health for the communities of the Free State and beyond.

That is the word from two leading UFS academics on the completion of the new facility; the BSL 3 laboratory will further enhance the university’s reputation for high-level international research – especially in the field of human pathogens – which will help to prevent disease and lead to better health outcomes.

The UFS Vice-Rector of Research, Professor Corli Witthuhn, stressed how important it is to have a facility of this nature – the only one of its kind in central South Africa – on the Bloemfontein campus, noting that its relevance is even greater, its role more critical now that the world finds itself in the grip of the global COVID-19 pandemic.

Intensify research of the impact on human pathogens

“The new BSL 3 facility – the Pathogen Research Laboratory – promises to intensify our research of the impact on human pathogens, as it allows our South African Research Chairs (SARChl) and other outstanding researchers to broaden the range of microbial pathogens that are being studied, and gain a better understanding of the global disease burden,” she said.

Her sentiments were echoed by the university’s Dean of the Faculty of Health Sciences, Prof Gert van Zyl, who added that the international level of quality research carried out in this facility will contribute to improvement in the disease profile of central South Africa.

“In supporting partners like the Free State Department of Health, this important scientific footprint in disease prevention and treatment will benefit the community at large by improving the quality of health research and delivering the best possible outcomes.”

The BSL 3 facility is supported by a small suite of laboratories for molecular and serological research and is accessible to any UFS researcher or student requiring a high level of pathogen containment. 

Appropriate biosafety and containment measures

Research and handling of infectious viruses and bacteria require appropriate biosafety and containment measures to prevent laboratory workers, personnel, and the environment being exposed to potentially biohazardous agents. 

There are four distinct levels of biosafety (levels one to four), with each having specific biosafety requirements. A BSL 3 laboratory is designed and precision-built to operate under negative pressure, and sees all exhausted air passing through a dedicated filter system to ensure that no pathogens escape into the environment. In addition, researchers wear appropriate personal protective equipment suited to the pathogens under investigation.  

The UFS BSL 3 laboratory is a modular container supplied by Air Filter Maintenance Services International (AFMS) and comprises two repurposed shipping containers. It was built and factory-tested in Johannesburg before being dismantled and relocated to the Bloemfontein Campus, where the containers were lifted by crane over trees and onto a concrete platform. The AFMS installation team then spent a number of days metamorphosing the two containers into a state-of-the-art laboratory, with a mechanical plant room and the ducting that maintains the laboratory under constant negative pressure, cleverly and discretely disguised behind cladding, allowing the structure to blend in with neighbouring buildings.

The need for training young researchers and developing skills

The Pathogen Research Laboratory is managed by Professor Felicity Burt, an arbovirologist with more than 25 years’ experience in handling infectious viruses. 

“Biosafety and biosecurity are essential in the investigation of emerging and infectious pathogens that cause significant disease and fatalities,” Prof Burt said.

“And while COVID-19, pandemic, viruses, vaccines, masks, social distancing, and lockdown were words seldom heard just six months ago, they are sadly now part of our everyday vocabulary,” she added, explaining that the current pandemic is the result of the zoonotic transmission of a virus from a wild animal to humans, with subsequent global spread.

“As this is not the first pandemic and will not be the last, the ongoing potential for the emergence of novel viruses and bacteria underscores the need for training young researchers and developing skills to tackle future outbreaks, develop new vaccines, understanding how pathogens cause disease, and discover alternate ways to mitigate outbreaks. 

“We are thrilled to have a state-of-the-art laboratory that allows us to safely handle those pathogens previously excluded from our research and surveillance programme. This facility positions the UFS to provide young scientists with world-class training and build capacity, now and into the future.”

* Division of Virology, University of the Free State, and NHLS, Bloemfontein, South Africa

News Archive

Bloemfontein's quality of tap water compares very favourably with bottled water
2009-08-04

The quality of the drinking water of five suburbs in Bloemfontein is at least as good as or better than bottled water. This is the result of a standard and chemical bacterial analysis done by the University of the Free State’s (UFS) Centre for Environmental Management in collaboration with the Institute for Groundwater Studies (IGS).

Five samples were taken from tap water sources in the suburbs of Universitas, Brandwag, Bain’s Vlei, Langenhoven Park and Bayswater and 15 samples were taken of different brands of still and unflavoured bottled water. The samples were analysed at the laboratory of the IGS, while the interpretation of the analysis was done by the Centre for Environmental Management.

“We wanted to evaluate the difference in quality for human consumption between tap water and that of the different brands of bottled water,” said Prof. Maitland Seaman, Head of the Centre for Environmental Management.

“With the exception of two samples produced by multinational companies at their plants in South Africa, the different brands of bottled water used for the study were produced by South African companies, including a local small-scale Bloemfontein producer,” said Prof. Seaman.

According to the labels, the sources of the water vary from pure spring water, to partial reverse osmosis (as an aid to standardise salt, i.e. mineral, content), to only reverse osmosis (to remove salts). (Reverse osmosis is a process in which water is forced under pressure through a pipe with minute pores through which water passes but no – or very low concentrations of – salts pass.)

According to Prof. Seaman, the analysis revealed some interesting findings, such as:

• It is generally accepted that drinking water should have an acceptable level of salt content, as the body needs salts. Most mineral contents were relatively higher in the tap water samples than the bottled water samples and were very much within the acceptable range of drinkable water quality. One of the bottled samples, however, had a very low mineral content, as the water was produced by reverse osmosis, as stated on the bottle. While reverse osmosis is used by various producers, most producers use it as an aid, not as a single method to remove nearly all the salts. Drinking only such water over a prolonged period may probably have a negative effect on the human physiology.

• The pH values of the tap water samples (8,12–8,40) were found to be slightly higher (slightly alkaline), like in all south-eastern Free State rivers (from where the water is sourced) than the pH of most of the bottled water samples, most of which are sourced and/or treated in other areas. Two brands of bottled water were found to have relatively low pH levels (both 4,5, i.e. acidic) as indicated on their bottles and as confirmed by the IGS analysis. The health implication of this range of pH is not significant.

• The analysis showed differences in the mineral content given on the labels of most of the water bottles compared to that found by IGS analysis. The possibility of seasonal fluctuation in content, depending on various factors, is expected and most of the bottling companies also indicate this on their labels. What was a rather interesting finding was that two pairs of bottled water brands claimed exactly the same mineral content but appeared under different brand names and were also priced differently. In each case, one of the pair was a well-known house brand, and the other obviously the original producer. In one of these paired cases, the house brand stated that the water was spring water, while the other (identical) “original” brand stated that it was spring water treated by reverse osmosis and oxygen-enriched.

• Nitrate (NO3) levels were uniformly low except in one bottled sample, suggesting a low (non-threatening) level of organic pollution in the source water. Otherwise, none of the water showed any sign of pollution.

• The bacterial analysis confirmed the absence of any traces of coliforms or E.coli in any of the samples, as was also indicated by the bottling companies. This is very reassuring. What is not known is how all these waters were sterilised, which could be anything from irradiation to chlorine or ozone treatment.

• The price of the different brands of bottled water, each containing 500 ml of still water, ranged between R3,99 and R8,99, with R5,03 being the average price. A comparison between the least expensive and the most expensive bottles of water indicated no significant difference in quality. In fact, discrepancies were observed in the most expensive bottle in that the amount of Calcium (Ca) claimed to be present in it was found to be significantly different from what the analysis indicated (29,6 mg/l versus 0,92 mg/l). The alkalinity (CaCO3 mg/l) indicated on the bottle was also found to differ considerably (83 mg/l versus 9,4 mg/l). The concentration of Total Dissolved Salts (TDS) was not given on the product.

“The preference for bottled water as compared to Bloemfontein’s tap water from a qualitative perspective as well as the price discrepancy is unjustifiable. The environmental footprint of bottled water is also large. Sourcing, treating, bottling, packaging and transporting, to mention but a few of the steps involved in the processing of bottled water, entail a huge carbon footprint, as well as a large water footprint, because it also requires water for treating and rinsing to process bottled water,” said Prof. Seaman.

Media Release
Lacea Loader
Deputy Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
3 August 2009

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept