Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 September 2020 | Story Prof Felicity Burt | Photo Supplied
Prof Felicity Burt in front of the new state-of-the-art biosafety Level (BSL) 3 laboratory.

The University of the Free State’s (UFS) new biosafety Level (BSL) 3 laboratory will allow the university’s world-respected researchers to further advance their research on and surveillance of infectious pathogens, with the ultimate benefit being the improved quality of health for the communities of the Free State and beyond.

That is the word from two leading UFS academics on the completion of the new facility; the BSL 3 laboratory will further enhance the university’s reputation for high-level international research – especially in the field of human pathogens – which will help to prevent disease and lead to better health outcomes.

The UFS Vice-Rector of Research, Professor Corli Witthuhn, stressed how important it is to have a facility of this nature – the only one of its kind in central South Africa – on the Bloemfontein campus, noting that its relevance is even greater, its role more critical now that the world finds itself in the grip of the global COVID-19 pandemic.

Intensify research of the impact on human pathogens

“The new BSL 3 facility – the Pathogen Research Laboratory – promises to intensify our research of the impact on human pathogens, as it allows our South African Research Chairs (SARChl) and other outstanding researchers to broaden the range of microbial pathogens that are being studied, and gain a better understanding of the global disease burden,” she said.

Her sentiments were echoed by the university’s Dean of the Faculty of Health Sciences, Prof Gert van Zyl, who added that the international level of quality research carried out in this facility will contribute to improvement in the disease profile of central South Africa.

“In supporting partners like the Free State Department of Health, this important scientific footprint in disease prevention and treatment will benefit the community at large by improving the quality of health research and delivering the best possible outcomes.”

The BSL 3 facility is supported by a small suite of laboratories for molecular and serological research and is accessible to any UFS researcher or student requiring a high level of pathogen containment. 

Appropriate biosafety and containment measures

Research and handling of infectious viruses and bacteria require appropriate biosafety and containment measures to prevent laboratory workers, personnel, and the environment being exposed to potentially biohazardous agents. 

There are four distinct levels of biosafety (levels one to four), with each having specific biosafety requirements. A BSL 3 laboratory is designed and precision-built to operate under negative pressure, and sees all exhausted air passing through a dedicated filter system to ensure that no pathogens escape into the environment. In addition, researchers wear appropriate personal protective equipment suited to the pathogens under investigation.  

The UFS BSL 3 laboratory is a modular container supplied by Air Filter Maintenance Services International (AFMS) and comprises two repurposed shipping containers. It was built and factory-tested in Johannesburg before being dismantled and relocated to the Bloemfontein Campus, where the containers were lifted by crane over trees and onto a concrete platform. The AFMS installation team then spent a number of days metamorphosing the two containers into a state-of-the-art laboratory, with a mechanical plant room and the ducting that maintains the laboratory under constant negative pressure, cleverly and discretely disguised behind cladding, allowing the structure to blend in with neighbouring buildings.

The need for training young researchers and developing skills

The Pathogen Research Laboratory is managed by Professor Felicity Burt, an arbovirologist with more than 25 years’ experience in handling infectious viruses. 

“Biosafety and biosecurity are essential in the investigation of emerging and infectious pathogens that cause significant disease and fatalities,” Prof Burt said.

“And while COVID-19, pandemic, viruses, vaccines, masks, social distancing, and lockdown were words seldom heard just six months ago, they are sadly now part of our everyday vocabulary,” she added, explaining that the current pandemic is the result of the zoonotic transmission of a virus from a wild animal to humans, with subsequent global spread.

“As this is not the first pandemic and will not be the last, the ongoing potential for the emergence of novel viruses and bacteria underscores the need for training young researchers and developing skills to tackle future outbreaks, develop new vaccines, understanding how pathogens cause disease, and discover alternate ways to mitigate outbreaks. 

“We are thrilled to have a state-of-the-art laboratory that allows us to safely handle those pathogens previously excluded from our research and surveillance programme. This facility positions the UFS to provide young scientists with world-class training and build capacity, now and into the future.”

* Division of Virology, University of the Free State, and NHLS, Bloemfontein, South Africa

News Archive

New world-class Chemistry facilities at UFS
2011-11-22

 

A world-class research centre was introduced on Friday 18 November 2011 when the new Chemistry building on the Bloemfontein Campus of the University of the Free State (UFS) was officially opened.
The upgrading of the building, which has taken place over a period of five years, is the UFS’s largest single financial investment in a long time. The building itself has been renovated at a cost of R60 million and, together with the new equipment acquired, the total investment exceeds R110 million. The university has provided the major part of this, with valuable contributions from Sasol and the South African Research Foundation (NRF), which each contributed more than R20 million for different facets and projects.
The senior management of Sasol, NECSA (The South African Nuclear Energy Corporation), PETLabs Pharmaceuticals, and visitors from Sweden attended the opening.

Prof. Andreas Roodt, Head of the Department of Chemistry, states the department’s specialist research areas includes X-ray crystallography, electrochemistry, synthesis of new molecules, the development of new methods to determine rare elements, water purification, as well as the measurement of energy and temperatures responsible for phase changes in molecules, the development of agents to detect cancer and other defects in the body, and many more.

“We have top expertise in various fields, with some of the best equipment and currently competing with the best laboratories in the world. We have collaborative agreements with more than twenty national and international chemistry research groups of note.

“Currently we are providing inputs about technical aspects of the acid mine water in Johannesburg and vicinity, as well as the fracking in the Karoo in order to release shale gas.”

New equipment installed during the upgrading action comprises:

  • X-ray diffractometers (R5 million) for crystal research. Crystals with unknown compounds are researched on an X-ray diffractometer, which determines the distances in angstroms (1 angstrom is a ten-billionth of a metre) and corners between atoms, as well as the arrangement of the atoms in the crystal, and the precise composition of the molecules in the crystal.
  • Differential scanning calorimeter (DSC) for thermographic analyses (R4 million). Heat transfer and the accompanying changes, as in volcanoes, and catalytic reactions for new motor petrol are researched. Temperature changes, coupled with the phase switchover of fluid crystals (liquid crystals -watches, TV screens) of solid matter to fluids, are measured.
  • Nuclear-magnetic resonance (NMR: Bruker 600 MHz; R12 million, one of the most advanced systems in Africa). A NMR apparatus is closely linked with the apparatus for magnetic resonance imaging, which is commonly used in hospitals. NMR is also used to determine the structure of unknown compounds, as well as the purity of the sample. Important structural characteristics of molecules can also be identified, which is extremely important if this molecule is to be used as medication, as well as to predict any possible side effects of it.
  • High-performance Computing Centre (HPC, R5 million). The UFS’ HPC consists of approximately 900 computer cores (equal to 900 ordinary personal computers) encapsulated in one compact system handling calculations at a billion-datapoint level It is used to calculate the geometry and spatial arrangements, energy and characteristics of molecules. The bigger the molecule that is worked with, the more powerful the computers must be doing the calculations. Computing chemistry is particularly useful to calculate molecular characteristics in the absence of X-ray crystallographic or other structural information. Some reactions are so quick that the intermediary products cannot be characterised and computing chemistry is of invaluable value in that case.
  • Catalytic and high-pressure equipment (R6 million; some of the most advanced equipment in the world). The pressures reached (in comparison with those in car tyres) are in gases (100 times bigger) and in fluids (1 500 times) in order to study very special reactions. The research is undertaken, some of which are in collaboration with Sasol, to develop new petrol and petrol additives and add value to local chemicals.
  • Reaction speed equipment (Kinetics: R5 million; some of the most advanced equipment in the world). The tempo and reactions can be studied in the ultraviolet, visible and infrared area at millisecond level; if combined with the NMR, up to a microsecond level (one millionth of a second.

Typical reactions are, for example, the human respiratory system, the absorption of agents in the brain, decomposition of nanomaterials and protein, acid and basis polymerisation reactions (shaping of water-bottle plastic) and many more.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept