Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 September 2020 | Story Prof Felicity Burt | Photo Supplied
Prof Felicity Burt in front of the new state-of-the-art biosafety Level (BSL) 3 laboratory.

The University of the Free State’s (UFS) new biosafety Level (BSL) 3 laboratory will allow the university’s world-respected researchers to further advance their research on and surveillance of infectious pathogens, with the ultimate benefit being the improved quality of health for the communities of the Free State and beyond.

That is the word from two leading UFS academics on the completion of the new facility; the BSL 3 laboratory will further enhance the university’s reputation for high-level international research – especially in the field of human pathogens – which will help to prevent disease and lead to better health outcomes.

The UFS Vice-Rector of Research, Professor Corli Witthuhn, stressed how important it is to have a facility of this nature – the only one of its kind in central South Africa – on the Bloemfontein campus, noting that its relevance is even greater, its role more critical now that the world finds itself in the grip of the global COVID-19 pandemic.

Intensify research of the impact on human pathogens

“The new BSL 3 facility – the Pathogen Research Laboratory – promises to intensify our research of the impact on human pathogens, as it allows our South African Research Chairs (SARChl) and other outstanding researchers to broaden the range of microbial pathogens that are being studied, and gain a better understanding of the global disease burden,” she said.

Her sentiments were echoed by the university’s Dean of the Faculty of Health Sciences, Prof Gert van Zyl, who added that the international level of quality research carried out in this facility will contribute to improvement in the disease profile of central South Africa.

“In supporting partners like the Free State Department of Health, this important scientific footprint in disease prevention and treatment will benefit the community at large by improving the quality of health research and delivering the best possible outcomes.”

The BSL 3 facility is supported by a small suite of laboratories for molecular and serological research and is accessible to any UFS researcher or student requiring a high level of pathogen containment. 

Appropriate biosafety and containment measures

Research and handling of infectious viruses and bacteria require appropriate biosafety and containment measures to prevent laboratory workers, personnel, and the environment being exposed to potentially biohazardous agents. 

There are four distinct levels of biosafety (levels one to four), with each having specific biosafety requirements. A BSL 3 laboratory is designed and precision-built to operate under negative pressure, and sees all exhausted air passing through a dedicated filter system to ensure that no pathogens escape into the environment. In addition, researchers wear appropriate personal protective equipment suited to the pathogens under investigation.  

The UFS BSL 3 laboratory is a modular container supplied by Air Filter Maintenance Services International (AFMS) and comprises two repurposed shipping containers. It was built and factory-tested in Johannesburg before being dismantled and relocated to the Bloemfontein Campus, where the containers were lifted by crane over trees and onto a concrete platform. The AFMS installation team then spent a number of days metamorphosing the two containers into a state-of-the-art laboratory, with a mechanical plant room and the ducting that maintains the laboratory under constant negative pressure, cleverly and discretely disguised behind cladding, allowing the structure to blend in with neighbouring buildings.

The need for training young researchers and developing skills

The Pathogen Research Laboratory is managed by Professor Felicity Burt, an arbovirologist with more than 25 years’ experience in handling infectious viruses. 

“Biosafety and biosecurity are essential in the investigation of emerging and infectious pathogens that cause significant disease and fatalities,” Prof Burt said.

“And while COVID-19, pandemic, viruses, vaccines, masks, social distancing, and lockdown were words seldom heard just six months ago, they are sadly now part of our everyday vocabulary,” she added, explaining that the current pandemic is the result of the zoonotic transmission of a virus from a wild animal to humans, with subsequent global spread.

“As this is not the first pandemic and will not be the last, the ongoing potential for the emergence of novel viruses and bacteria underscores the need for training young researchers and developing skills to tackle future outbreaks, develop new vaccines, understanding how pathogens cause disease, and discover alternate ways to mitigate outbreaks. 

“We are thrilled to have a state-of-the-art laboratory that allows us to safely handle those pathogens previously excluded from our research and surveillance programme. This facility positions the UFS to provide young scientists with world-class training and build capacity, now and into the future.”

* Division of Virology, University of the Free State, and NHLS, Bloemfontein, South Africa

News Archive

Groundwater management vital for groundwater sustainability
2016-11-09

Description: Dr Yolanda Kotzé Tags: Dr Yolanda Kotzé

Dr Yolanda Kotzé, Affiliated Researcher in the
UFS Institute for Groundwater Studies, is passionate
about the management of groundwater.
Photo: Rulanzen Martin

An interest in groundwater resource management ignited the spark for a PhD research thesis by Dr Yolanda Kotzé, Affiliated Researcher in the Institute for Groundwater Studies (IGS) at the University of the Free State (UFS).

Her PhD research thesis titled, A Framework for Groundwater Use Authorisations as Part of Groundwater Governance in Water Scarce Areas within South Africa, was the result of her interest in groundwater resource management. Dr Kotzé identified the agricultural sector as one of the major water users, and a decision was made to conduct research within this sector.  

Research funded by Institute for Groundwater Studies
Groundwater is water found underground in cracks and spaces in soil, sand, and rocks. It is stored in, and moves slowly through geological formations of soil, sand, and rocks (aquifers). The National Department of Water and Sanitation was indirectly the client for this research. The research project was funded by the IGS. Given the current drought, effective groundwater resource management can be achieved within all sectors through sustainable abstraction and use without over-abstraction.

“Groundwater can be effectively managed
in the agricultural sector by sustainable use,
monitoring the quantity of groundwater use,
and measuring groundwater levels,”
said Dr Kotzé.

Research addresses improvement of groundwater management
Her promotor, mentor, teacher, and friend, the late Prof Gerrit van Tonder, introduced her to the field of Geohydrology, and especially to groundwater resource management. “With my research, I made a significant contribution to the improvement of groundwater governance and groundwater resource management, as well as to the handling of groundwater use authorisations for irrigation purposes in South Africa,” said Dr Kotzé. With this significant contribution, she attempts to address the phenomenon of poor groundwater allocation and groundwater resource management by means of a framework. The development of this framework has shown the value of action research in an attempt to find a solution to a problem. “Groundwater can be effectively managed in the agricultural sector by sustainable use, monitoring the quantity of groundwater use, and measuring groundwater levels,” said Dr Kotzé.

The methodology of the research consisted primarily of action research, which has a five-phase cyclical process. The research was Dr Kotzé’s application for a PhD in Geohydrology at the UFS in 2012. The research was completed in 2015.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept