Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 September 2020 | Story Prof Felicity Burt | Photo Supplied
Prof Felicity Burt in front of the new state-of-the-art biosafety Level (BSL) 3 laboratory.

The University of the Free State’s (UFS) new biosafety Level (BSL) 3 laboratory will allow the university’s world-respected researchers to further advance their research on and surveillance of infectious pathogens, with the ultimate benefit being the improved quality of health for the communities of the Free State and beyond.

That is the word from two leading UFS academics on the completion of the new facility; the BSL 3 laboratory will further enhance the university’s reputation for high-level international research – especially in the field of human pathogens – which will help to prevent disease and lead to better health outcomes.

The UFS Vice-Rector of Research, Professor Corli Witthuhn, stressed how important it is to have a facility of this nature – the only one of its kind in central South Africa – on the Bloemfontein campus, noting that its relevance is even greater, its role more critical now that the world finds itself in the grip of the global COVID-19 pandemic.

Intensify research of the impact on human pathogens

“The new BSL 3 facility – the Pathogen Research Laboratory – promises to intensify our research of the impact on human pathogens, as it allows our South African Research Chairs (SARChl) and other outstanding researchers to broaden the range of microbial pathogens that are being studied, and gain a better understanding of the global disease burden,” she said.

Her sentiments were echoed by the university’s Dean of the Faculty of Health Sciences, Prof Gert van Zyl, who added that the international level of quality research carried out in this facility will contribute to improvement in the disease profile of central South Africa.

“In supporting partners like the Free State Department of Health, this important scientific footprint in disease prevention and treatment will benefit the community at large by improving the quality of health research and delivering the best possible outcomes.”

The BSL 3 facility is supported by a small suite of laboratories for molecular and serological research and is accessible to any UFS researcher or student requiring a high level of pathogen containment. 

Appropriate biosafety and containment measures

Research and handling of infectious viruses and bacteria require appropriate biosafety and containment measures to prevent laboratory workers, personnel, and the environment being exposed to potentially biohazardous agents. 

There are four distinct levels of biosafety (levels one to four), with each having specific biosafety requirements. A BSL 3 laboratory is designed and precision-built to operate under negative pressure, and sees all exhausted air passing through a dedicated filter system to ensure that no pathogens escape into the environment. In addition, researchers wear appropriate personal protective equipment suited to the pathogens under investigation.  

The UFS BSL 3 laboratory is a modular container supplied by Air Filter Maintenance Services International (AFMS) and comprises two repurposed shipping containers. It was built and factory-tested in Johannesburg before being dismantled and relocated to the Bloemfontein Campus, where the containers were lifted by crane over trees and onto a concrete platform. The AFMS installation team then spent a number of days metamorphosing the two containers into a state-of-the-art laboratory, with a mechanical plant room and the ducting that maintains the laboratory under constant negative pressure, cleverly and discretely disguised behind cladding, allowing the structure to blend in with neighbouring buildings.

The need for training young researchers and developing skills

The Pathogen Research Laboratory is managed by Professor Felicity Burt, an arbovirologist with more than 25 years’ experience in handling infectious viruses. 

“Biosafety and biosecurity are essential in the investigation of emerging and infectious pathogens that cause significant disease and fatalities,” Prof Burt said.

“And while COVID-19, pandemic, viruses, vaccines, masks, social distancing, and lockdown were words seldom heard just six months ago, they are sadly now part of our everyday vocabulary,” she added, explaining that the current pandemic is the result of the zoonotic transmission of a virus from a wild animal to humans, with subsequent global spread.

“As this is not the first pandemic and will not be the last, the ongoing potential for the emergence of novel viruses and bacteria underscores the need for training young researchers and developing skills to tackle future outbreaks, develop new vaccines, understanding how pathogens cause disease, and discover alternate ways to mitigate outbreaks. 

“We are thrilled to have a state-of-the-art laboratory that allows us to safely handle those pathogens previously excluded from our research and surveillance programme. This facility positions the UFS to provide young scientists with world-class training and build capacity, now and into the future.”

* Division of Virology, University of the Free State, and NHLS, Bloemfontein, South Africa

News Archive

UFS study shows playing time in Super Rugby matches decreasing
2016-12-19

Description: Super Rugby playing time Tags: Super Rugby playing time 

The study by Riaan Schoeman, (left), Prof Robert Schall,
and Prof Derik Coetzee from the University of the Free State
on variables in Super Rugby can provide coaches with
insight on how to approach the game.
Photo: Anja Aucamp

It is better for Super Rugby teams not to have the ball, which also leads to reduced overall playing time in matches.

This observation is from a study by the University of the Free State on the difference between winning and losing teams. Statistics between 2011 and 2015 show that Super Rugby winning teams kick more and their defence is better.

These statistics were applied by Riaan Schoeman, lecturer in Exercise and Sport Sciences, Prof Derik Coetzee, Head of Department: Exercise and Sport Sciences, and Prof Robert Schall, Department of Mathematics and Actuarial Sciences. The purpose of the study, Changes in match variables for winning and losing teams in Super Rugby from 2011 to 2015, was to observe changes. Data on 30 games (four from each team) per season, supplied by the Cheetahs via Verusco TryMaker Pro, were used.

About two minutes less action
“We found that the playing time has decreased. This is the time the ball is in play during 80 minutes,” says Schoeman. In 2011, the average playing time was 34.12 minutes and in 2015 it was 31.95.

“The winning team has less possession of the ball and doesn’t want it. They play more conservatively. They dominate with kicks and then they play,” says Prof Coetzee, who was the conditioning coach for the Springboks in 2007 when they won the World Cup.

Lineouts also more about kicking
As a result, the number of line-outs also increased (from 0.31 per minute in 2011 to 0.34 in 2015) and the winning teams are better in this regard.

“The winning team has less possession of the ball
and doesn’t want it. They play a more conservative
game. They dominate with kicks and then they play.”

Schoeman believes that rule changes could also have contributed to reduced playing time, since something like scrum work nowadays causes more problems. “When a scrum falls, the time thereafter is not playing time.”

According to Prof Coetzee, rucks and mauls have also increased, (rucks from 2.08 per minute in 2011 to 2.16 in 2015 and mauls from 0.07 per minute in 2011 to 0.10 in 2015). “The teams that win, dominate these areas,” he says.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept