Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
28 September 2020 | Story Andre Damons | Photo Supplied
Dr Martin Nyaga, Senior Lecturer and Researcher: NGS, will be heading the World Health Organisation Collaborating Centre (WHO CC).

The University of the Free State (UFS) has been designated a World Health Organisation Collaborating Centre (WHO CC), and the university’s Next Generation Sequencing (NGS) Unit, in partnership with the World Health Organisation (WHO), will for the next four years be conducting genome sequencing of pathogenic organisms, including rotavirus strains from the African continent. 

This centre will be part of the Vaccine Preventable Diseases (VPD) Pathogens Genomics Cluster and will run from September 2020 to September 2024. 

Dr Martin Nyaga, Senior Lecturer and Researcher: NGS/Virology, who will be heading the WHO CC, says an institution is designated as a WHO CC by the WHO Director-General and endorsed by the host country’s minister of health to form part of an international collaborative network, carrying out activities in support of the WHO programmess at all levels. A designation as a WHO CC is a time-limited agreement of collaboration between WHO and the designated institution, through which the latter agrees to implement a series of concrete activities, specifically designed for WHO.

A supreme achievement

Says Dr Nyaga: “In my opinion, a WHO CC designation is one of the supreme achievements an institution can be conferred as a recognition for foregoing exceptional collaborative venture with the WHO and showing future potential to assist the WHO with its global programmes and in our case, the WHO Regional Office for Africa region to offer solutions to the WHO VPD Surveillance and pathogens genomics cluster.”

According to Dr Nyaga this designation was awarded to the UFS after the WHO was content with the outcome of a service contract whereby the UFS-NGS unit undertook a pilot rotavirus surveillance project at whole genome level, using two African countries for the pilot, Rwanda and Zambia.

“From the outcomes of the pilot surveillance project between 2017 and 2019, the WHO/AFRO was satisfied with the genomic data that was generated and partially disseminated in scientific databases and journals as a collaborative venture. 

“It was thus proposed to strengthen its existing collaboration with the UFS-NGS Unit, which initiated the application process to designate the UFS-NGS unit as a WHO CC, an initiative that has taken approximately 20 months to finalise through the different phases of the application and approvals for the designation,” explains Dr Nyaga.

The purpose of the WHO CC

The new WHO CC will upon request by the WHO, implement agreed work plans in a timely manner and to the highest possible standards of quality and must comply with the referred terms of reference and conditions. These include: 
• Conducting genome sequencing of pathogenic organisms causing VPD, including rotavirus strains collected as part of the routine VPD surveillance using NGS technology and analysis of the generated datasets using bioinformatics tools.

• Conducting molecular characterisation of specimens collected during outbreaks and public health emergencies as part of the support for monitoring, preparedness and response to VPD disease outbreaks in Africa.

• Provide technical guidance to WHO on strategies to improve laboratory molecular diagnostics, molecular typing and NGS of rotavirus diarrheal strains and other enteropathogens to detect novel and re-emerging strains. 

• Conduct validation of tools and new molecular diagnostics for detection and characterisation of unusual or rare VPD strains to guide studies and development of new vaccines for VPD.

• Organise capacity-building and training workshops on whole genome sequencing of priority VPD pathogenic organisms.

The impact of the WHO CC on the work of the UFS-NGS 

According to Dr Nyaga, the designation brings extra responsibilities to his work and to the activities of the UFS-NGS unit. “Such initiatives are very welcome to enhance the business aspects, research and academic activities of the UFS-NGS unit, as the benefits are quite holistic since the collaboration enhances co-ownership of data and offers opportunities to train postgraduate students and other scientists.

“It also expands the research infrastructure and most importantly contributes to policy for numerous African governments in important decisions such as vaccine implementation activities, from an informed point of view and managing public health needs that require rapid response like outbreaks that may lead to pandemics.” 
• The current WHO CC designations at South African Institutions of higher learning and research can be found at: 

News Archive

Nobel Prize-winner presents first lecture at Vice-Chancellor’s prestige lecture series
2017-11-17


 Description: Prof Levitt visit Tags: Prof Levitt visit

At the first lecture in the UFS Vice Chancellor’s Prestige Lecture series,
were from the left: Prof Jeanette Conradie, UFS Department of Chemistry;
Prof Michael Levitt, Nobel Prize-winner in Chemistry, biophysicist and
professor in structural biology at Stanford University; Prof Francis Petersen,
UFS Vice-Chancellor and Rector; and Prof Corli Witthuhn,
UFS Vice-Rector: Research. 
Photo: Johan Roux

South African born biophysicist and Nobel Prize-winner in Chemistry, Prof Michael Levitt, paid a visit to the University of the Free Sate (UFS) as part of the Academy of Science of South Africa’s (ASSAf) Distinguished Visiting Scholars’ Programme. 

Early this week the professor in structural biology at Stanford University in the US presented a captivating lecture on the Bloemfontein Campus on his lifetime’s work that earned him the Nobel Prize in 2013. His lecture launched the UFS Vice-Chancellor’s Prestige Lecture series, aimed at knowledge sharing within, and beyond our university boundaries. 

Prof Levitt was one of the first researchers to conduct molecular dynamics simulations of DNA and proteins and developed the first software for this purpose. He received the prize for Chemistry, together with Martin Karplus and Arieh Warshel, “for the development of multiscale models for complex chemical systems”.

Attending the lecture were members of UFS management, academic staff from a range of faculties and other universities as well as young researchers. “Multiscale modelling is very much based on something that makes common sense,” Prof Levitt explained. “And that is to makes things as simple as possible, but not simpler. Everything needs to have the right level of simplicity, that is not too simple, but not too complicated.”  

An incredible mind
Prof Levitt enrolled for applied mathematics at the University of Pretoria at the age of 15. He visited his uncle and aunt in London after his first-year exams, and decided to stay on because they had a television, he claims. A series on molecular biology broadcast on BBC, sparked an interest that would lead Prof Levitt via Israel, and Cambridge, to the Nobel Prize stage – all of which turned out to be vital building blocks for his research career. 

Technology to the rescue
The first small protein model that Prof Levitt built was the size of a room. But that exercise led to the birth of multiscale modelling of macromolecules. For the man on the street, that translates to computerised models used to simulate protein action, and reaction. With some adaptations, the effect of medication can be simulated on human protein in a virtual world. 

“I was lucky to stand on the shoulder of giants,” he says about his accomplishments, and urges the young to be good and kind. “Be passionate about what you do, be persistent, and be original,” he advised.  

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept