Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
28 September 2020 | Story Andre Damons | Photo Supplied
Dr Martin Nyaga, Senior Lecturer and Researcher: NGS, will be heading the World Health Organisation Collaborating Centre (WHO CC).

The University of the Free State (UFS) has been designated a World Health Organisation Collaborating Centre (WHO CC), and the university’s Next Generation Sequencing (NGS) Unit, in partnership with the World Health Organisation (WHO), will for the next four years be conducting genome sequencing of pathogenic organisms, including rotavirus strains from the African continent. 

This centre will be part of the Vaccine Preventable Diseases (VPD) Pathogens Genomics Cluster and will run from September 2020 to September 2024. 

Dr Martin Nyaga, Senior Lecturer and Researcher: NGS/Virology, who will be heading the WHO CC, says an institution is designated as a WHO CC by the WHO Director-General and endorsed by the host country’s minister of health to form part of an international collaborative network, carrying out activities in support of the WHO programmess at all levels. A designation as a WHO CC is a time-limited agreement of collaboration between WHO and the designated institution, through which the latter agrees to implement a series of concrete activities, specifically designed for WHO.

A supreme achievement

Says Dr Nyaga: “In my opinion, a WHO CC designation is one of the supreme achievements an institution can be conferred as a recognition for foregoing exceptional collaborative venture with the WHO and showing future potential to assist the WHO with its global programmes and in our case, the WHO Regional Office for Africa region to offer solutions to the WHO VPD Surveillance and pathogens genomics cluster.”

According to Dr Nyaga this designation was awarded to the UFS after the WHO was content with the outcome of a service contract whereby the UFS-NGS unit undertook a pilot rotavirus surveillance project at whole genome level, using two African countries for the pilot, Rwanda and Zambia.

“From the outcomes of the pilot surveillance project between 2017 and 2019, the WHO/AFRO was satisfied with the genomic data that was generated and partially disseminated in scientific databases and journals as a collaborative venture. 

“It was thus proposed to strengthen its existing collaboration with the UFS-NGS Unit, which initiated the application process to designate the UFS-NGS unit as a WHO CC, an initiative that has taken approximately 20 months to finalise through the different phases of the application and approvals for the designation,” explains Dr Nyaga.

The purpose of the WHO CC

The new WHO CC will upon request by the WHO, implement agreed work plans in a timely manner and to the highest possible standards of quality and must comply with the referred terms of reference and conditions. These include: 
• Conducting genome sequencing of pathogenic organisms causing VPD, including rotavirus strains collected as part of the routine VPD surveillance using NGS technology and analysis of the generated datasets using bioinformatics tools.

• Conducting molecular characterisation of specimens collected during outbreaks and public health emergencies as part of the support for monitoring, preparedness and response to VPD disease outbreaks in Africa.

• Provide technical guidance to WHO on strategies to improve laboratory molecular diagnostics, molecular typing and NGS of rotavirus diarrheal strains and other enteropathogens to detect novel and re-emerging strains. 

• Conduct validation of tools and new molecular diagnostics for detection and characterisation of unusual or rare VPD strains to guide studies and development of new vaccines for VPD.

• Organise capacity-building and training workshops on whole genome sequencing of priority VPD pathogenic organisms.

The impact of the WHO CC on the work of the UFS-NGS 

According to Dr Nyaga, the designation brings extra responsibilities to his work and to the activities of the UFS-NGS unit. “Such initiatives are very welcome to enhance the business aspects, research and academic activities of the UFS-NGS unit, as the benefits are quite holistic since the collaboration enhances co-ownership of data and offers opportunities to train postgraduate students and other scientists.

“It also expands the research infrastructure and most importantly contributes to policy for numerous African governments in important decisions such as vaccine implementation activities, from an informed point of view and managing public health needs that require rapid response like outbreaks that may lead to pandemics.” 
• The current WHO CC designations at South African Institutions of higher learning and research can be found at: 

News Archive

Plant eco-physiologist finds effective solutions for crop optimisation
2016-07-24

Description: Orange trees Tags: Orange trees

The bio-stimulant was tested on
this citrus. This is the first time
that the product has been tested
on a crop.

In a time characterised by society facing increasing population growth, food crises, and extreme climatic conditions such as drought, it is essential for farmers to integrate science with their work practices in order to optimise crops.

Role of photosynthesis and plant sap data

By knowing how to use photosynthesis and plant sap data for determining plant health, fast and effective solutions could be established for the optimisation of crops. This technique, which could help farmers utilise every bit of usable land effectively, is the focus of Marguerite Westcott’s PhD study. She is a junior lecturer and plant eco-physiologist in die Department of Plant Sciences at the University of the Free State.

Westcott uses this technique in her studies to prove that a newly-developed bio-stimulant stimulates plants in order to metabolise water and other nutrients better, yielding increased crops as a result.

Agricultural and mining sectors benefit from research

The greatest part of these projects focuses on the agricultural sector. Westcott and a colleague, Dr Gert Marais, are researching the physiology of pecan and citrus trees in order to optimise the growth of these crops, thus minimising disease through biological methods. Field trials are being conducted in actively-producing orchards in the Hartswater and Patensie areas in conjunction with the South African Pecan Nut Producers Association (SAPPA) amongst others.
 
The principles that Westcott applies in her research are also used in combination with the bio-stimulant in other studies on disturbed soil, such as mine-dump material, for establishing plants in areas where they would not grow normally. This is an economical way for both the agricultural and mining sectors to improve nutrient absorption, stimulate growth, and contribute to the sustainable utilisation of the soil.

Description: Pecan nut orchards  Tags: Pecan nut orchards

The bio-stimulant contributes to the immunity of the plants.
It was tested in these pecan nut orchards (Hartswater).

Soil rehabilitation key aspect in research projects

“One of two things is happening in my research projects. Either the soil is rehabilitated to bring about the optimal growth of a plant, or the plants are used to rehabilitate the soil,” says Westcott.

Data surveys for her PhD studies began in 2015. “This will be a long-term project in which seasonal data will be collected continuously. The first set of complete field data, together with pot trial data, will be completed after the current crop harvest,” says Westcott.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept