Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
08 April 2021 | Story Nonsindiso Qwabe | Photo Sonia SMall

How has COVID-19 further widened the gender inequality gap in the workplace?

This was the central question addressed during the first instalment of a webinar series on Gender and Social Justice hosted by the Unit for Institutional Change and Social Justice at the University of the Free State (UFS). The webinar, which was hosted on the UFS Qwaqwa Campus on 29 March 2021, featured Prof Pearl Sithole, Qwaqwa Campus Vice-Principal: Academic and Research; Advocate Nthabiseng Sepanya-Mogale, Commissioner at the Commission for Gender Equality (CGE); and Tholo Motaung, skills trainer, moderator, and gender activist at the Vaal University of Technology as panellists. 

Prof Sithole said COVID-19 revealed the disparity that still exists between men and women in the workplace. “COVID-19 has been the magnifier. We’ve modernised quite a lot, but we’re still unequal in terms of gender. Why are we not progressing in terms of women moving forward towards equality when there has been so much progressive thinking in the political space, social justice space, as well as in the kind of feminism we have had in academia? Why are we actually not winning the battle of just regarding each other as equals?” 

Women hardest hit by COVID-19 lockdown

Advocate Sepanya-Mogale said the lockdown revealed the gender gap mostly through the significant impact it has had on South African women.

In 2020, 34% of the country’s workforce comprised women – a sharp decline of 9,8% from 43,8% in 2018.
“This decline is alarming and a clear indication of who becomes the first victims, but that is hardly talked about. A lot of women have experienced resistance from industries they had been serving diligently,” she said. She said women were often faced with the burden of integrating their work with increased care responsibilities for their children and sometimes also the elderly as primary caregivers. The double responsibility placed on women continues to re-enforce gender roles in our societies and further pushes away the success of closing the gap on gender equality prospects in our society.

Advocate Sepanya-Mogale said women were the hardest hit in most industries. In the beauty and tourism industry; air transportation; informal trading; and healthcare sector to name a few, women bore the brunt the most. “Women are the biggest employees on all economic levels in South Africa, especially the low-income and unskilled levels,” she said.
She said as the spread of the virus was likely to continue disrupting economic activity, all sectors of society needed to get involved and play their part.

“As disease outbreaks are not likely to disappear in the near future, proactive international action is required to not only save lives but to also protect economic prosperity. Academic institutions are authorities in terms of opening up new discussions, leading new debates, and putting critical issues at the centre of the table. Let us all do what we can so that we empower our people relevantly for the times we’re living in.”

News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept