Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
19 July 2021 | Story Lunga Luthuli | Photo Supplied
Fletcher Hiten, Chief Bioanalyst at FARMOVS, next to Aurora.

The Bioanalytical Services Division (BASD) at FARMOVS comprises a group of skilled and passionate scientists involved in the quantification of drugs, metabolites, and biomarkers in various biological matrices. One of their Analytical Science experts, Fletcher Hiten, explains what sets their team apart from the rest.

“Over the past 47 years, we have developed almost 600 validated assay methods. Most of these methods are for the analysis of ‘small’ molecules using chromatographic techniques such as LC-MS/MS, GC-MS, and HPLC, although LC-MS/MS is the technique of choice. New bioanalytical assays are continuously being development and validated in adherence to international regulatory guidelines set by the US-FDA and European Medicines Agency (EMA),” says Hiten.

“Recently, we decided to enhance our capabilities by recruiting exceptional talent. The newest member of the FARMOVS team is Aurora, a SCIEX Triple Quad™ 7500 LC-MS/MS mass analyser. Aurora is Latin for ‘dawn’: the beginning of a new era, especially one considered favourable. The SCIEX 7500 is currently marketed as the most sensitive triple quadrupole mass spectrometer available, allowing for sub-picogram/ml quantification. This means that Aurora will set FARMOVS apart from other clinical research organisations (CROs), creating an exciting and favourable landscape for clients to explore new partners in research.” 

Hiten stated: “If there was ever a time to move your next study to FARMOVS, it is now. To have Aurora on our team has many advantages, given that our clients can access unprecedented analytical sensitivity, which enables the quantification of pharmacokinetic (PK) profiles of drugs that have very low systemic absorption. These include predominantly local acting drugs, such as plasma concentrations of respiratory drugs (e.g., tiotropium and ipratropium), topically applied creams and ointments, and ophthalmology drops with ultra-sensitivity.”

“In addition, the quantification of drugs in low-volume matrices will also be exponentially enhanced, enabling the quantification of body fluids, where only a few microlitres can be collected, for example vaginal fluid, dried blood spots, cerebrospinal fluid, aqueous humour, synovial fluid, and epidermal micro-dialysis lysate – to name a few. The quantification of absorbed exogenous drugs into tissue, like vaginal biopsies and hair follicles, is also possible,” added Hiten. 

“And finally, multiple analyte analysis. In this case, the collected blood sample needs to be split into multiple aliquots for analysis, for example drug-drug interaction (DDI) studies with the Basel cocktail. The smaller sample volumes will allow more frequent sampling to be feasible and thus more accurate DDI interpretation,” Hiten explains.

“As a bio-analyst, one is seldom surprised. However, Aurora has already opened doors to new frontiers for our entire team and we cannot wait to do some more exploration,” says Hiten. 

To find out more about what Aurora and the FARMOVS team can do for your study, email business@farmovs.com

News Archive

UFS Prestige Scholar shares her vision on crystallography with worldwide audience
2014-04-24

 
Dr Alice Brink
Dr Alice Brink, a Prestige Scholar and lecturer in the Department of Chemistry at the University of the Free State, was selected by UNESCO to participate, together with some 15 other young scientists from all over the world, in a round-table discussion at the Opening Ceremony of the International Year of Crystallography.

During this event, that took place in Paris, France, Dr Brink could, on stage, share her vision as one of the next generation of scientists.

“The 15 crystallographers consisted of eight young, established scientists and seven ‘young-young’ scientists who are starting their careers. We participated in a group discussion in order for the crystallographic community to better understand the challenges faced by young scientists across the globe.

“It was a great privilege to be invited to be part of this talented and diverse discussion group and to hear the challenges that are faced by young scientists from different parts of the world. It is also comforting to hear that scientific difficulties that are found in South Africa are commonly experienced in both First and Third World countries,” said Dr Brink.

“Crystallography has directly influenced the development of numerous scientific fields such as chemistry, physics, mathematics, medicine, engineering and material sciences. More inter-departmental collaboration would benefit greatly from crystallography, as this multi-faceted science provides foundation principles for applied research,” she said.

The United Nations declared 2014 as the International Year of Crystallography, and it was officially opened at the UNESCO Headquarters in Paris by the Secretary-General of the UN, Ban Ki-moon.

The ceremony was video-streamed live to more than 500 destinations all over the world.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept