Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
19 July 2021 | Story Lunga Luthuli | Photo Supplied
Fletcher Hiten, Chief Bioanalyst at FARMOVS, next to Aurora.

The Bioanalytical Services Division (BASD) at FARMOVS comprises a group of skilled and passionate scientists involved in the quantification of drugs, metabolites, and biomarkers in various biological matrices. One of their Analytical Science experts, Fletcher Hiten, explains what sets their team apart from the rest.

“Over the past 47 years, we have developed almost 600 validated assay methods. Most of these methods are for the analysis of ‘small’ molecules using chromatographic techniques such as LC-MS/MS, GC-MS, and HPLC, although LC-MS/MS is the technique of choice. New bioanalytical assays are continuously being development and validated in adherence to international regulatory guidelines set by the US-FDA and European Medicines Agency (EMA),” says Hiten.

“Recently, we decided to enhance our capabilities by recruiting exceptional talent. The newest member of the FARMOVS team is Aurora, a SCIEX Triple Quad™ 7500 LC-MS/MS mass analyser. Aurora is Latin for ‘dawn’: the beginning of a new era, especially one considered favourable. The SCIEX 7500 is currently marketed as the most sensitive triple quadrupole mass spectrometer available, allowing for sub-picogram/ml quantification. This means that Aurora will set FARMOVS apart from other clinical research organisations (CROs), creating an exciting and favourable landscape for clients to explore new partners in research.” 

Hiten stated: “If there was ever a time to move your next study to FARMOVS, it is now. To have Aurora on our team has many advantages, given that our clients can access unprecedented analytical sensitivity, which enables the quantification of pharmacokinetic (PK) profiles of drugs that have very low systemic absorption. These include predominantly local acting drugs, such as plasma concentrations of respiratory drugs (e.g., tiotropium and ipratropium), topically applied creams and ointments, and ophthalmology drops with ultra-sensitivity.”

“In addition, the quantification of drugs in low-volume matrices will also be exponentially enhanced, enabling the quantification of body fluids, where only a few microlitres can be collected, for example vaginal fluid, dried blood spots, cerebrospinal fluid, aqueous humour, synovial fluid, and epidermal micro-dialysis lysate – to name a few. The quantification of absorbed exogenous drugs into tissue, like vaginal biopsies and hair follicles, is also possible,” added Hiten. 

“And finally, multiple analyte analysis. In this case, the collected blood sample needs to be split into multiple aliquots for analysis, for example drug-drug interaction (DDI) studies with the Basel cocktail. The smaller sample volumes will allow more frequent sampling to be feasible and thus more accurate DDI interpretation,” Hiten explains.

“As a bio-analyst, one is seldom surprised. However, Aurora has already opened doors to new frontiers for our entire team and we cannot wait to do some more exploration,” says Hiten. 

To find out more about what Aurora and the FARMOVS team can do for your study, email business@farmovs.com

News Archive

Collaboration between UFS and Mayo Clinic to revolutionise cancer treatment
2014-06-27



Attending the lecture were, from the left: Dr Chantel Swart, Prof Lodewyk Kock, Prof Debabrata Mukhopadhyay, Prof James du Preez; back: Prof Pieter van Wyk.
Dr Swart, Profs Kock and Du Preez are from the Department of Microbial, Biochemical and Food Biotechnology. Prof Mukhopadhyay is from the Mayo Clinic (US) and Prof Van Wyk is from the Centre for Microscopy at the UFS.
Photo: Supplied
The UFS made a discovery that may have enormous implications for the treatment of diseases in humans.

Since the discovery, the UFS joined forces with the Mayo Clinic in Rochester, US, in the fight against cancer.

In this collective effort, UFS researchers would be able to assist the Mayo team to:
• see how treatment in cancer patients is progressing,
• target treatments more effectively,
• reduce dosages in order to make treatment gentler on the patient,
• track the effectiveness of the chemotherapy drugs used, and
• gain an accurate view of how the cancer is being eliminated.

Prof Lodewyk Kock, Outstanding Professor at the Department of Microbial, Biochemical and Food Biotechnology, and his team incidentally created a technique to use argon gas particles for the first time on biological material to slice open cells to look inside.

The team that supported Prof Kock includes Dr Chantel Swart, Khumisho Dithebe (PhD student), Prof Hendrik Swart (Department of Physics) and Prof Pieter van Wyk (Centre for Microscopy).

Prof Debabrata Mukhopadhyay from the Mayo Clinic in Rochester, US, got to hear about this breakthrough at the UFS and a collaboration between the two institutions was established.

During a visit to the Bloemfontein Campus, Prof Mukhopadhyay explained novel techniques that make use of gold nanoparticles. These particles attach to chemotherapeutic drugs to selectively target cancer cells – dramatically decreasing the side effects to normal human cells.

For these new drugs (coupled to gold nanoparticles) to be accepted into clinical practice, visual and chemical proof is needed, though. This is where the technique developed by the UFS will play a vital role.

With the technique to look inside cells, the composition, location and metabolism of these drugs can be determined. This will aid in a proof of concept for the application of the nano-drugs. Furthermore, it will enable approval for use of these drugs in clinical trials and eventually could revolutionise cancer treatment as a whole.

For video lectures on the technique used, as well as its findings, follow these links:

1. http://vimeo.com/63643628 (Comic version for school kids)

2. http://vimeo.com/61521401 (Detailed version for fellow scientists)

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept