Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
19 July 2021 | Story Lunga Luthuli | Photo Supplied
Fletcher Hiten, Chief Bioanalyst at FARMOVS, next to Aurora.

The Bioanalytical Services Division (BASD) at FARMOVS comprises a group of skilled and passionate scientists involved in the quantification of drugs, metabolites, and biomarkers in various biological matrices. One of their Analytical Science experts, Fletcher Hiten, explains what sets their team apart from the rest.

“Over the past 47 years, we have developed almost 600 validated assay methods. Most of these methods are for the analysis of ‘small’ molecules using chromatographic techniques such as LC-MS/MS, GC-MS, and HPLC, although LC-MS/MS is the technique of choice. New bioanalytical assays are continuously being development and validated in adherence to international regulatory guidelines set by the US-FDA and European Medicines Agency (EMA),” says Hiten.

“Recently, we decided to enhance our capabilities by recruiting exceptional talent. The newest member of the FARMOVS team is Aurora, a SCIEX Triple Quad™ 7500 LC-MS/MS mass analyser. Aurora is Latin for ‘dawn’: the beginning of a new era, especially one considered favourable. The SCIEX 7500 is currently marketed as the most sensitive triple quadrupole mass spectrometer available, allowing for sub-picogram/ml quantification. This means that Aurora will set FARMOVS apart from other clinical research organisations (CROs), creating an exciting and favourable landscape for clients to explore new partners in research.” 

Hiten stated: “If there was ever a time to move your next study to FARMOVS, it is now. To have Aurora on our team has many advantages, given that our clients can access unprecedented analytical sensitivity, which enables the quantification of pharmacokinetic (PK) profiles of drugs that have very low systemic absorption. These include predominantly local acting drugs, such as plasma concentrations of respiratory drugs (e.g., tiotropium and ipratropium), topically applied creams and ointments, and ophthalmology drops with ultra-sensitivity.”

“In addition, the quantification of drugs in low-volume matrices will also be exponentially enhanced, enabling the quantification of body fluids, where only a few microlitres can be collected, for example vaginal fluid, dried blood spots, cerebrospinal fluid, aqueous humour, synovial fluid, and epidermal micro-dialysis lysate – to name a few. The quantification of absorbed exogenous drugs into tissue, like vaginal biopsies and hair follicles, is also possible,” added Hiten. 

“And finally, multiple analyte analysis. In this case, the collected blood sample needs to be split into multiple aliquots for analysis, for example drug-drug interaction (DDI) studies with the Basel cocktail. The smaller sample volumes will allow more frequent sampling to be feasible and thus more accurate DDI interpretation,” Hiten explains.

“As a bio-analyst, one is seldom surprised. However, Aurora has already opened doors to new frontiers for our entire team and we cannot wait to do some more exploration,” says Hiten. 

To find out more about what Aurora and the FARMOVS team can do for your study, email business@farmovs.com

News Archive

Well-established root system important for sustainable production in semi-arid grasslands
2015-02-24

Plot layout where production and root studies were done
Photo: Supplied

The importance of a well-established root system for sustainable production in the semi-arid grasslands cannot be over-emphasised.

A study of Prof Hennie Snyman from the Department of Animal and Wildlife and Grassland Sciences at the University of the Free State is of the few studies in which soil-water instead of rainfall has been used to estimate above- and below-ground production of semi-arid grasslands. “In the past, plant ecological studies have concentrated largely on above-ground parts of the grassland ecosystem with less emphasis on root growth. This study is, therefore, one of the few done on root dynamics in drier areas,” said Prof Snyman.

The longevity of grass seeds in the soil seed bank is another aspect that is being investigated at present. This information could provide guidelines in grassland restoration.

“Understanding changes in the hydrological characteristics of grassland ecosystems with degradation is essential when making grassland management decisions in arid and semi-arid areas to ensure sustainable animal production. The impact of grassland degradation on productivity, root production, root/shoot ratios, and water-use efficiency has been quantified for the semi-arid grasslands over the last 35 years. Because of the great impact of sustainable management guidelines on land users, this study will be continuing for many years,” said Prof Snyman.

Water-use efficiency (WUE) is defined as the quantity of above- and/or below-ground plant produced over a given period of time per unit of water evapotranspired. Sampling is done from grassland artificially maintained in three different grassland conditions: good, moderate, and poor.

As much as 86, 89 and 94% of the roots for grasslands in good, moderate and poor conditions respectively occur at a depth of less than 300 mm. Root mass is strongly seasonal with the most active growth taking place during March and April. Root mass appears to be greater than above-ground production for these semi-arid areas, with an increase in roots in relation to above-ground production with grassland degradation. The mean monthly root/shoot ratios for grasslands in good, moderate, and poor conditions are 1.16, 1.11, and 1.37 respectively. Grassland degradation lowered above- and below-ground plant production significantly as well as water-use efficiency. The mean WUE (root production included) was 4.79, 3.54 and 2.47 kg ha -1 mm -1 for grasslands in good, moderate, and poor conditions respectively.

These water-use efficiency observations are among the few that also include root production in their calculations.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept