Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
19 July 2021 | Story Lunga Luthuli | Photo Supplied
Fletcher Hiten, Chief Bioanalyst at FARMOVS, next to Aurora.

The Bioanalytical Services Division (BASD) at FARMOVS comprises a group of skilled and passionate scientists involved in the quantification of drugs, metabolites, and biomarkers in various biological matrices. One of their Analytical Science experts, Fletcher Hiten, explains what sets their team apart from the rest.

“Over the past 47 years, we have developed almost 600 validated assay methods. Most of these methods are for the analysis of ‘small’ molecules using chromatographic techniques such as LC-MS/MS, GC-MS, and HPLC, although LC-MS/MS is the technique of choice. New bioanalytical assays are continuously being development and validated in adherence to international regulatory guidelines set by the US-FDA and European Medicines Agency (EMA),” says Hiten.

“Recently, we decided to enhance our capabilities by recruiting exceptional talent. The newest member of the FARMOVS team is Aurora, a SCIEX Triple Quad™ 7500 LC-MS/MS mass analyser. Aurora is Latin for ‘dawn’: the beginning of a new era, especially one considered favourable. The SCIEX 7500 is currently marketed as the most sensitive triple quadrupole mass spectrometer available, allowing for sub-picogram/ml quantification. This means that Aurora will set FARMOVS apart from other clinical research organisations (CROs), creating an exciting and favourable landscape for clients to explore new partners in research.” 

Hiten stated: “If there was ever a time to move your next study to FARMOVS, it is now. To have Aurora on our team has many advantages, given that our clients can access unprecedented analytical sensitivity, which enables the quantification of pharmacokinetic (PK) profiles of drugs that have very low systemic absorption. These include predominantly local acting drugs, such as plasma concentrations of respiratory drugs (e.g., tiotropium and ipratropium), topically applied creams and ointments, and ophthalmology drops with ultra-sensitivity.”

“In addition, the quantification of drugs in low-volume matrices will also be exponentially enhanced, enabling the quantification of body fluids, where only a few microlitres can be collected, for example vaginal fluid, dried blood spots, cerebrospinal fluid, aqueous humour, synovial fluid, and epidermal micro-dialysis lysate – to name a few. The quantification of absorbed exogenous drugs into tissue, like vaginal biopsies and hair follicles, is also possible,” added Hiten. 

“And finally, multiple analyte analysis. In this case, the collected blood sample needs to be split into multiple aliquots for analysis, for example drug-drug interaction (DDI) studies with the Basel cocktail. The smaller sample volumes will allow more frequent sampling to be feasible and thus more accurate DDI interpretation,” Hiten explains.

“As a bio-analyst, one is seldom surprised. However, Aurora has already opened doors to new frontiers for our entire team and we cannot wait to do some more exploration,” says Hiten. 

To find out more about what Aurora and the FARMOVS team can do for your study, email business@farmovs.com

News Archive

Female-headed households more prone to economic strains due to rainfall variations
2016-02-02

Description: Martin Flatø  Tags: Martin Flatø

Martin Flatø
Photo: University of Oslo press

Research shows that a total of 41 % of South African (SA) households are led by women, and these households are twice as likely to be poor compared to other households.

Martin Flatø spent three months at University of the Free State (UFS), researching how female-headed households in our country are affected by variations in rainfall, which cause crop failures with their implications for rural economies.

He is a PhD student from the University of Oslo in Norway who was part of the 2014/15 Southern African Young Scientists Summer Programme (SA-YSSP) that was hosted by the UFS last year.

Flatø formed part of a group of international scholars who conducted research on how families led by females are affected by climate change. The group focused on the implications of the weather on crop failures and rural economies. Gender and household structures were studied to determine ways in which they are affected by economic fluctuations.
 
The research group’s preliminary findings indicate that female-headed households are more vulnerable to rainfall variation than households where there are adult residents or workers of both genders.

In view of the current water shortage in the Free State, as well as scientists’ projections that our country will be among the regions hardest hit by climate change in terms of a surge in temperature, Flatø’s collaborative research has substantial relevance.|

Grooming first class scientists
The SA-YSSP is a joint initiative of South African National Research Foundation and the International Institute of Applied Systems Analysis (IIASA). Its main aim is tackling challenges faced by the world at large and South Africa in particular.

Out of 24 PhD students from 18 countries and various academic disciplines, Flatø emerged as one of only three scholars to be awarded the Systems Analysis Scholarships for his outstanding science at the end of the programme.

World class mentorship
Prof André Pelser and Dr Raya Muttarak were Flatø’s SA-YSSP supervisors. Prof Pelser, of the UFS Department of Sociology, is a leading academic on population processes, and how they relate to local environmental issues in South Africa. Dr Muttarak is a research scholar at IIASA in Austria.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept