Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
19 July 2021 | Story Lunga Luthuli | Photo Supplied
Fletcher Hiten, Chief Bioanalyst at FARMOVS, next to Aurora.

The Bioanalytical Services Division (BASD) at FARMOVS comprises a group of skilled and passionate scientists involved in the quantification of drugs, metabolites, and biomarkers in various biological matrices. One of their Analytical Science experts, Fletcher Hiten, explains what sets their team apart from the rest.

“Over the past 47 years, we have developed almost 600 validated assay methods. Most of these methods are for the analysis of ‘small’ molecules using chromatographic techniques such as LC-MS/MS, GC-MS, and HPLC, although LC-MS/MS is the technique of choice. New bioanalytical assays are continuously being development and validated in adherence to international regulatory guidelines set by the US-FDA and European Medicines Agency (EMA),” says Hiten.

“Recently, we decided to enhance our capabilities by recruiting exceptional talent. The newest member of the FARMOVS team is Aurora, a SCIEX Triple Quad™ 7500 LC-MS/MS mass analyser. Aurora is Latin for ‘dawn’: the beginning of a new era, especially one considered favourable. The SCIEX 7500 is currently marketed as the most sensitive triple quadrupole mass spectrometer available, allowing for sub-picogram/ml quantification. This means that Aurora will set FARMOVS apart from other clinical research organisations (CROs), creating an exciting and favourable landscape for clients to explore new partners in research.” 

Hiten stated: “If there was ever a time to move your next study to FARMOVS, it is now. To have Aurora on our team has many advantages, given that our clients can access unprecedented analytical sensitivity, which enables the quantification of pharmacokinetic (PK) profiles of drugs that have very low systemic absorption. These include predominantly local acting drugs, such as plasma concentrations of respiratory drugs (e.g., tiotropium and ipratropium), topically applied creams and ointments, and ophthalmology drops with ultra-sensitivity.”

“In addition, the quantification of drugs in low-volume matrices will also be exponentially enhanced, enabling the quantification of body fluids, where only a few microlitres can be collected, for example vaginal fluid, dried blood spots, cerebrospinal fluid, aqueous humour, synovial fluid, and epidermal micro-dialysis lysate – to name a few. The quantification of absorbed exogenous drugs into tissue, like vaginal biopsies and hair follicles, is also possible,” added Hiten. 

“And finally, multiple analyte analysis. In this case, the collected blood sample needs to be split into multiple aliquots for analysis, for example drug-drug interaction (DDI) studies with the Basel cocktail. The smaller sample volumes will allow more frequent sampling to be feasible and thus more accurate DDI interpretation,” Hiten explains.

“As a bio-analyst, one is seldom surprised. However, Aurora has already opened doors to new frontiers for our entire team and we cannot wait to do some more exploration,” says Hiten. 

To find out more about what Aurora and the FARMOVS team can do for your study, email business@farmovs.com

News Archive

Students receive hands-on crime scene investigation training
2016-09-02

Description: Crime scene investigation training Tags: Crime scene investigation training

Ntau Mafisa, a forensic science honours student
at the UFS, and Captain Samuel Sethunya from
the SAPS Crime Scene Management in
Bloemfontein.
Photo: Leonie Bolleurs

With murder and robbery rates on the rise, the Forensic Science Programme of the Department of Genetics at the University of the Free State is playing a key role in training South Africa’s future crime scene investigators and forensic laboratory analysts.

According to the Institute for Security Studies (ISS), murder and aggravated robbery rates for 2014/2015, as recorded by the South African Police Services (SAPS) have increased. Incidents of murder increased by 4.6% in the period from 2013/2014 to 2014/2015 and aggravated robbery increased by 8.5 % in the same period. The ISS is an African organisation thant enhances human security by providing independent and authoritative research, expert policy advice and capacity building.

Dr Ellen Mwenesongole, a forensic science lecturer at the Department of Genetics, said the university was one of a few universities in South Africa that actually had a forensic science programme, especially starting from undergraduate level.

Crime scene evaluation component incorporated in curriculum
As part of its Forensic Science Honours Programme, the department has, for the first time, incorporated a mock crime scene evaluation component in its curriculum. Students process a mock crime scene and are assessed based on how closely they follow standard operating procedures related to crime scenes and subsequent laboratory analysis of items of possible evidential value.

The mock crime scene forms part of a research project data collection of the honours students. In these projects students utilise different analytical methods to analyse and distinguish between different types of evidence such as hair fibres, cigarette butts, illicit drugs and dyes extracted from questioned documents and lipsticks.

Students utilise different analytical methods to analyse
and distinguish between different types of evidence.

This year, the department trained the first group of nine students in the Forensic Science Honours Programme. Dr Mwenesongole, who received her training in the UK at the University of Strathclyde in Glasgow, Scotland, and Anglia Ruskin University in Cambridge, England, said incorporating a crime scene evaluation component into the curriculum was a global trend at universities that were offering forensic science programmes.

Department of Genetics and SAPS collaborate
It is important to add this component to the student’s curriculum. In this way the university is equipping students not only with theoretical knowledge but practical knowledge on the importance of following proper protocol when collecting evidence at crime scenes and analysing it in the laboratory to reduce the risk of it becoming inadmissible in a court of law.

The Genetics Department has a good working relationship with the Forensic Science Laboratory and Free State Crime Scene Management of the Division Forensic Services of the SAPS. The mock crime scene was set up and assessed in collaboration with the Crime Scene Management Division of the SAPS. Although the SAPS provides specialist advanced training to its staff members, the university hopes to improve employability for students through such programmes.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept