Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
19 July 2021 | Story Lunga Luthuli | Photo Supplied
Fletcher Hiten, Chief Bioanalyst at FARMOVS, next to Aurora.

The Bioanalytical Services Division (BASD) at FARMOVS comprises a group of skilled and passionate scientists involved in the quantification of drugs, metabolites, and biomarkers in various biological matrices. One of their Analytical Science experts, Fletcher Hiten, explains what sets their team apart from the rest.

“Over the past 47 years, we have developed almost 600 validated assay methods. Most of these methods are for the analysis of ‘small’ molecules using chromatographic techniques such as LC-MS/MS, GC-MS, and HPLC, although LC-MS/MS is the technique of choice. New bioanalytical assays are continuously being development and validated in adherence to international regulatory guidelines set by the US-FDA and European Medicines Agency (EMA),” says Hiten.

“Recently, we decided to enhance our capabilities by recruiting exceptional talent. The newest member of the FARMOVS team is Aurora, a SCIEX Triple Quad™ 7500 LC-MS/MS mass analyser. Aurora is Latin for ‘dawn’: the beginning of a new era, especially one considered favourable. The SCIEX 7500 is currently marketed as the most sensitive triple quadrupole mass spectrometer available, allowing for sub-picogram/ml quantification. This means that Aurora will set FARMOVS apart from other clinical research organisations (CROs), creating an exciting and favourable landscape for clients to explore new partners in research.” 

Hiten stated: “If there was ever a time to move your next study to FARMOVS, it is now. To have Aurora on our team has many advantages, given that our clients can access unprecedented analytical sensitivity, which enables the quantification of pharmacokinetic (PK) profiles of drugs that have very low systemic absorption. These include predominantly local acting drugs, such as plasma concentrations of respiratory drugs (e.g., tiotropium and ipratropium), topically applied creams and ointments, and ophthalmology drops with ultra-sensitivity.”

“In addition, the quantification of drugs in low-volume matrices will also be exponentially enhanced, enabling the quantification of body fluids, where only a few microlitres can be collected, for example vaginal fluid, dried blood spots, cerebrospinal fluid, aqueous humour, synovial fluid, and epidermal micro-dialysis lysate – to name a few. The quantification of absorbed exogenous drugs into tissue, like vaginal biopsies and hair follicles, is also possible,” added Hiten. 

“And finally, multiple analyte analysis. In this case, the collected blood sample needs to be split into multiple aliquots for analysis, for example drug-drug interaction (DDI) studies with the Basel cocktail. The smaller sample volumes will allow more frequent sampling to be feasible and thus more accurate DDI interpretation,” Hiten explains.

“As a bio-analyst, one is seldom surprised. However, Aurora has already opened doors to new frontiers for our entire team and we cannot wait to do some more exploration,” says Hiten. 

To find out more about what Aurora and the FARMOVS team can do for your study, email business@farmovs.com

News Archive

UFS study shows playing time in Super Rugby matches decreasing
2016-12-19

Description: Super Rugby playing time Tags: Super Rugby playing time 

The study by Riaan Schoeman, (left), Prof Robert Schall,
and Prof Derik Coetzee from the University of the Free State
on variables in Super Rugby can provide coaches with
insight on how to approach the game.
Photo: Anja Aucamp

It is better for Super Rugby teams not to have the ball, which also leads to reduced overall playing time in matches.

This observation is from a study by the University of the Free State on the difference between winning and losing teams. Statistics between 2011 and 2015 show that Super Rugby winning teams kick more and their defence is better.

These statistics were applied by Riaan Schoeman, lecturer in Exercise and Sport Sciences, Prof Derik Coetzee, Head of Department: Exercise and Sport Sciences, and Prof Robert Schall, Department of Mathematics and Actuarial Sciences. The purpose of the study, Changes in match variables for winning and losing teams in Super Rugby from 2011 to 2015, was to observe changes. Data on 30 games (four from each team) per season, supplied by the Cheetahs via Verusco TryMaker Pro, were used.

About two minutes less action
“We found that the playing time has decreased. This is the time the ball is in play during 80 minutes,” says Schoeman. In 2011, the average playing time was 34.12 minutes and in 2015 it was 31.95.

“The winning team has less possession of the ball and doesn’t want it. They play more conservatively. They dominate with kicks and then they play,” says Prof Coetzee, who was the conditioning coach for the Springboks in 2007 when they won the World Cup.

Lineouts also more about kicking
As a result, the number of line-outs also increased (from 0.31 per minute in 2011 to 0.34 in 2015) and the winning teams are better in this regard.

“The winning team has less possession of the ball
and doesn’t want it. They play a more conservative
game. They dominate with kicks and then they play.”

Schoeman believes that rule changes could also have contributed to reduced playing time, since something like scrum work nowadays causes more problems. “When a scrum falls, the time thereafter is not playing time.”

According to Prof Coetzee, rucks and mauls have also increased, (rucks from 2.08 per minute in 2011 to 2.16 in 2015 and mauls from 0.07 per minute in 2011 to 0.10 in 2015). “The teams that win, dominate these areas,” he says.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept