Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021
Previous Archive
05 February 2019 | Story Leonie Bolleurs
Cancer research
Inorganic Chemistry supervisors in the Radiopharmacy Laboratory during the preparation of a typical complex mixture to see how fast it reacts. If radioactivity is used, it is handled behind the grey lead-metal shield to minimise radiation of the researcher. Here are, from the left, front: Dr Marietjie Schutte-Smith, Dr Alice Brink (both scholars from the UFS Prestige Scholar Programme), and Dr Truidie Venter (all three are Thuthuka-funded researchers). Back: Prof André Roodt and Dr Johan Venter. (Not present: Prof Deon Visser and Amanda Manicum).

Imagine that you have been diagnosed with bone cancer and only have six months to live. You are in a wheelchair because the pain in your legs is so immense that you can’t walk anymore – similar to a mechanism eating your bones from the inside.

You are lucky though, since you could be injected with a drug to control the pain so effective that you will be able to get out of the wheelchair within a day-and-a-half and be able to walk again. Real-life incidents like these provide intense job satisfaction to Prof André Roodt, Head of a research group in Inorganic Chemistry at the University of the Free State (UFS). The research, which is conducted by the Inorganic Group at the UFS, contributes potentially to the availability of pain therapy that does not involve common drugs, but improves the quality of life for cancer patients.

The research conducted by the Inorganic Group under the leadership of Prof Roodt, plays a major role in the clever design of model medicines to better detect and treat cancer.

The Department of Chemistry is one of approximately 10 institutions worldwide that conducts research on chemical mechanisms to identify and control cancer. “The fact that we are able to cooperate with the Departments of Nuclear Medicine and Medical Physics at the UFS, the Animal Research Centre, and other collaborators in South Africa, Switzerland and the USA, but especially the methodology we utilise to conduct research (studying the chemical manner in which drugs are absorbed in cancer as well as the time involved), enhances the possibility of making a contribution to cancer research,” says Prof Roodt.

Technique to detect cancer spots on bone
According to the professor, there are various ways of detecting cancer in the body. Cancer can, inter alia, be identified by analysing blood, X-rays (external) or through an internal technique where the patient is injected with a radioactive isotope.

Prof Roodt explains: “The doctor suspects that the patient has bone cancer and injects the person with a drug consisting of an isotope (only emits “X-rays” and does no damage to tissue) that is connected to a phosphonate (similar to those used for osteoporosis). Once the drug (which contains the isotope Technetium-99m) is injected, it moves to the spot on the bone where the cancer is located. The gamma rays in the isotope illuminate the area and the doctor can see exactly where treatment should be applied. The Technetium-99m has the same intensity gamma rays as normal X-rays and therefore operates the same as an internal X-ray supply.” With this technique, the doctor can see where the cancer spots are within a few hours.

The same technique can be used to identify inactive parts of the brain in Alzheimer patients, as well as areas of the heart where there is no blood supply or where the heart muscle is dead.

Therapeutic irradiation of cancer
For the treatment of pain connected with cancer, the isotope Rhenium-186 is injected. Similar to the manner in which the Technetium-99m phosphonate compound is ingested into the body, the Rhenium-186 phosphonate travels to the cancer spots. Patients thus receive therapeutic irradiation – a technique known as palliative therapy, which is excellent for treating pain. A dosage of this therapy usually lasts for about two months.

The therapy is, however, patient specific. The dosages should correspond with the occurrence and size of cancer spots in the patient’s body. First, the location of the cancer will be determined by means of a technetium scan. After that, the size of the area where the cancer occurs has to be determined. The dosage for addressing total pain distribution will be calculated according to these results.

Technique to detect cancer spots on soft tissue

Another technique to detect cancer as spots on bone or in soft tissue and organs throughout the body is by utilising a different type of irradiation, a so-called PET isotope. The Fluorine-18 isotope is currently used widely, and in Pretoria a machine called a cyclotron-facility was established by Dr Gerdus Kemp, who is a former PhD graduate from the Inorganic Research Group. The F-18 is then hidden within a glucose molecule and a patient will be injected with the drug after being calmed and after the metabolism has been lowered considerably. The glucose, which is the 'food' that cancer needs to grow, will then travel directly to the cancer area and the specific area where the cancer is located will thus be traced and ‘illuminated’ by the Fluorine-18, which emits its own “X-rays”.

In the late 80s, Prof Roodt did his own postdoctoral study on this research in the US. He started collaborating with the Department of Nuclear Medicine at the UFS in the early 90s, when he initiated testing for this research.

Through their research of more than 15 years, the Inorganic Group in the Department of Chemistry has made a major contribution to cancer research. Research on mechanisms for the detection of cancer, by designing new clever chemical agents, and the chemical ways in which these agents are taken up in the body, especially contributes to the development in terms of cancer therapy and imaging, and has been used by a number of hospitals in South Africa.

The future holds great promise
Prof Roodt and his team are already working on a collaborative study between the UFS and Kenya/ Sudan/ Lesotho. It involves the linking of radio isotopes, as mentioned above, to known natural products (such as rooibos tea and South African aloe extracts), which possess anti-cancer qualities. A preliminary World Patent has also just been filed in more than 30 countries on potential new cancer medicines which contain both an imaging isotope and a therapy isotope/ compound.

News Archive

Regional Conference on Trafficking in Human Beings
2007-06-29

Trafficking in Human Beings:
National and International Perspectives

Date: 17th August 2007
Address: CR Swart Auditorium, University of the Free State, Bloemfontein, South Africa.

Every year thousands of children and adults become victims of trafficking and abuse in South Africa and throughout the southern African region. Victims are trafficked for a myriad of reasons: sexual exploitation, including prostitution and pornography; illegal labour, including child conscription; domestic servitude; illegal adoptions; body parts/organs; and forced marriages.

The Unit for Children’s Rights, Department of Criminal and Medical Law, University of the Free State (UFS), together with the Centre for Continuing Legal Education at UFS, will host a Regional Conference on Trafficking in Human Beings. The conference will bring together key role-players from the South African government as well as crucial international non-governmental organizations (NGOs) in the region.

Trafficking in human beings, especially women and children, is a serious violation of the human rights of the victims, as well as an extremely profitable source of income to organized crime, and needs the attention and intervention of both governmental and non-governmental institutions in South Africa.

Speakers will include representatives from the United National Office on Drugs and Crime (UNODC), the International Organization for Migration (IOM), the National Prosecuting Authority (NPA), the South African Law Reform Commission, the Unit for Children’s Rights-UFS, and NGOs Molo Songololo and Terre Des Homes, that work with child trafficking victims in South Africa and around the world.

The media are invited to report on the conference, and interview speakers and presenters Attached find programme. For more info contact the following persons.

1. Beatri Kruger - 051 401 2108 / email: krugerh.rd@mail.ufs.ac.za  
2. Susan Kreston - 051 401 9562 / email: krestons.rd@mail.ufs.ac.za  
3. Elizabeth Snyman – 051 401 2268 / email: snymane.rd@mail.ufs.ac.za  

Programme

Trafficking in human beings:
National & international perspectives


Presented by The Unit for Children’s Rights, Department Of Criminal & Medical Law , Faculty of Law, in Conjunction with The Centre for Continuing Legal Education, University of the Free State.

Funded through the Generosity of the United States Department of State

17 AUGUST, 2007 – CR SWART AUDITORIAM

8:00-8:30 Registration & Tea
8:30-8:45 Opening & Welcome
Prof. JJ Henning, Faculty of Law
8:45-9:40 Overview & Global Perspective
Prof. Susan Kreston - Unit for Children’s Rights, Faculty of Law-UFS

9:40-10:00 TEA

10:00-10:45 International Perspectives & the Role of Organized Crime in Trafficking
Wiesje Zikkenheiner, Associate Expert
United Nations Office on Drugs & Crime, Pretoria
10:45-11:45 Identifying and Assisting Victims of Trafficking
Marija Nikolovska, Project Officer
International Organization for Migration, Pretoria

11:45-12:30 LUNCH

12:30-1:15 Prosecuting Trafficking Without Trafficking Laws
Adv. Nolwandle Qaba, Sexual Offences & Community Affairs Unit
National Prosecuting Authority, Pretoria
1:15-2:15 Recommendations for New Legislation in South Africa
Lowesa Stuurman - South African Law Reform Commission, Pretoria

2:15-2:30 TEA

2:30-2:50 The Role of Terre Des Homes in Fighting Trafficking in Children
Judith Mthombeni– Terre Des Homes, Pretoria
2:50-3:50 Trafficking in Children in South Africa – A Front Line Perspective
Patrick Solomon - Molo Songololo, Cape Town
3:50-4:00 Closing Remarks
Adv. Beatri Kruger
Department of Criminal & Medical Law - UFS

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept