Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021
Previous Archive
05 February 2019 | Story Leonie Bolleurs
Cancer research
Inorganic Chemistry supervisors in the Radiopharmacy Laboratory during the preparation of a typical complex mixture to see how fast it reacts. If radioactivity is used, it is handled behind the grey lead-metal shield to minimise radiation of the researcher. Here are, from the left, front: Dr Marietjie Schutte-Smith, Dr Alice Brink (both scholars from the UFS Prestige Scholar Programme), and Dr Truidie Venter (all three are Thuthuka-funded researchers). Back: Prof André Roodt and Dr Johan Venter. (Not present: Prof Deon Visser and Amanda Manicum).

Imagine that you have been diagnosed with bone cancer and only have six months to live. You are in a wheelchair because the pain in your legs is so immense that you can’t walk anymore – similar to a mechanism eating your bones from the inside.

You are lucky though, since you could be injected with a drug to control the pain so effective that you will be able to get out of the wheelchair within a day-and-a-half and be able to walk again. Real-life incidents like these provide intense job satisfaction to Prof André Roodt, Head of a research group in Inorganic Chemistry at the University of the Free State (UFS). The research, which is conducted by the Inorganic Group at the UFS, contributes potentially to the availability of pain therapy that does not involve common drugs, but improves the quality of life for cancer patients.

The research conducted by the Inorganic Group under the leadership of Prof Roodt, plays a major role in the clever design of model medicines to better detect and treat cancer.

The Department of Chemistry is one of approximately 10 institutions worldwide that conducts research on chemical mechanisms to identify and control cancer. “The fact that we are able to cooperate with the Departments of Nuclear Medicine and Medical Physics at the UFS, the Animal Research Centre, and other collaborators in South Africa, Switzerland and the USA, but especially the methodology we utilise to conduct research (studying the chemical manner in which drugs are absorbed in cancer as well as the time involved), enhances the possibility of making a contribution to cancer research,” says Prof Roodt.

Technique to detect cancer spots on bone
According to the professor, there are various ways of detecting cancer in the body. Cancer can, inter alia, be identified by analysing blood, X-rays (external) or through an internal technique where the patient is injected with a radioactive isotope.

Prof Roodt explains: “The doctor suspects that the patient has bone cancer and injects the person with a drug consisting of an isotope (only emits “X-rays” and does no damage to tissue) that is connected to a phosphonate (similar to those used for osteoporosis). Once the drug (which contains the isotope Technetium-99m) is injected, it moves to the spot on the bone where the cancer is located. The gamma rays in the isotope illuminate the area and the doctor can see exactly where treatment should be applied. The Technetium-99m has the same intensity gamma rays as normal X-rays and therefore operates the same as an internal X-ray supply.” With this technique, the doctor can see where the cancer spots are within a few hours.

The same technique can be used to identify inactive parts of the brain in Alzheimer patients, as well as areas of the heart where there is no blood supply or where the heart muscle is dead.

Therapeutic irradiation of cancer
For the treatment of pain connected with cancer, the isotope Rhenium-186 is injected. Similar to the manner in which the Technetium-99m phosphonate compound is ingested into the body, the Rhenium-186 phosphonate travels to the cancer spots. Patients thus receive therapeutic irradiation – a technique known as palliative therapy, which is excellent for treating pain. A dosage of this therapy usually lasts for about two months.

The therapy is, however, patient specific. The dosages should correspond with the occurrence and size of cancer spots in the patient’s body. First, the location of the cancer will be determined by means of a technetium scan. After that, the size of the area where the cancer occurs has to be determined. The dosage for addressing total pain distribution will be calculated according to these results.

Technique to detect cancer spots on soft tissue

Another technique to detect cancer as spots on bone or in soft tissue and organs throughout the body is by utilising a different type of irradiation, a so-called PET isotope. The Fluorine-18 isotope is currently used widely, and in Pretoria a machine called a cyclotron-facility was established by Dr Gerdus Kemp, who is a former PhD graduate from the Inorganic Research Group. The F-18 is then hidden within a glucose molecule and a patient will be injected with the drug after being calmed and after the metabolism has been lowered considerably. The glucose, which is the 'food' that cancer needs to grow, will then travel directly to the cancer area and the specific area where the cancer is located will thus be traced and ‘illuminated’ by the Fluorine-18, which emits its own “X-rays”.

In the late 80s, Prof Roodt did his own postdoctoral study on this research in the US. He started collaborating with the Department of Nuclear Medicine at the UFS in the early 90s, when he initiated testing for this research.

Through their research of more than 15 years, the Inorganic Group in the Department of Chemistry has made a major contribution to cancer research. Research on mechanisms for the detection of cancer, by designing new clever chemical agents, and the chemical ways in which these agents are taken up in the body, especially contributes to the development in terms of cancer therapy and imaging, and has been used by a number of hospitals in South Africa.

The future holds great promise
Prof Roodt and his team are already working on a collaborative study between the UFS and Kenya/ Sudan/ Lesotho. It involves the linking of radio isotopes, as mentioned above, to known natural products (such as rooibos tea and South African aloe extracts), which possess anti-cancer qualities. A preliminary World Patent has also just been filed in more than 30 countries on potential new cancer medicines which contain both an imaging isotope and a therapy isotope/ compound.

News Archive

Reclassification of giraffe status pivotal in public action, says UFS researcher
2016-12-08

Description: Reclassification of giraffe status  Tags: Reclassification of giraffe status  

Dr Francois Deacon, specialised researcher
in the Department of Animal, Wildlife, and
Grassland Sciences at the University of the Free State.
Photo: Supplied

Great news for those who care about the conservation of giraffes is today’s (8 December 2016) announcement by the International Union for the Conservation of Nature (IUCN) that giraffes are now classified as ‘Vulnerable’. The species, formerly classified as ‘Least Concern’ on the IUCN Red List — an index on the likelihood of extinction of animals worldwide — is threatened with extinction.

“Until recently, few people were aware of the situation facing giraffes. It is time to show the world giraffe numbers are in danger. This reclassification by the IUCN is pivotal to get the public to stand up and take action for giraffes,” said Dr Francois Deacon, specialised researcher in the Department of Animal, Wildlife, and Grassland Sciences at the University of the Free State (UFS).

Research is essential to develop effective conservation plans for a species

Key to this announcement was the status report submitted by Dr Deacon. He was the lead author responsible for the submission of the Southern African Giraffe subspecies (Giraffa camelopardalis giraffa) status report that was part of the larger species report submitted for review by the (IUCN). The UFS has been doing many research projects in the past couple of years on giraffe-related issues and topics to address this problem.

The UFS is one of only a few universities in Africa that is committed to studying giraffes to ensure the conservation of this species for generations to come.

“The reclassification of giraffes to ‘Vulnerable’
status, by the IUCN, is pivotal to get the public
to stand up and take action for giraffes.”

A 40% decline in the giraffe population over the past two decades is proof that the longnecks are officially in trouble. According to Dr Deacon, this rate of decline is faster than that of the elephant or rhino. The main reasons for the devastating decline are habitat loss, civil unrest and illegal hunting.

Dr Deacon, pioneer in the use of GPS technology to study giraffes and their natural habitat, said “This vulnerability clearly stipulates we are quickly losing grip on our last few natural populations”. He and a team of researchers at the UFS in South Africa are leading various research and conservation projects to help save the last remaining giraffes in Africa.

Giraffes moved from ‘least concern’ to ‘vulnerable’ on the Red List

The IUCN, a health check for our planet, is the highest level at which decision-makers can prove how many species (fauna or flora) are surviving or not. The update from ‘Least Concern’ to ‘Vulnerable’ on the Red List was released at the 13th Conference of the Parties to the Convention on Biological Diversity in Cancun, Mexico.

A wildlife documentary, Last of the Longnecks clearly shows how the number of giraffes has plummeted in the past two decades from 154 000 to fewer than 98 000 today — with numbers of some giraffes, such as Kenya’s reticulated giraffe, declining by as much as 80%.  

Any individual or institution that wants to make a contribution relating to giraffe research can contact Dr Deacon at the UFS on deaconf@ufs.ac.za.

 

In other media:

Announcement on BBC news: http://www.bbc.co.uk/news/science-environment-38240760
Time: http://time.com/3622344/giraffe-extinction/
The Telegraph: http://www.telegraph.co.uk/science/2016/12/08/giraffes-now-facing-extinction-warn-conservationists/
ABC News: http://abcnews.go.com/International/giraffes-danger-extinction-numbers-dropped/story?id=27334959
theguardian: https://www.theguardian.com/environment/2016/dec/08/giraffe-red-list-vulnerable-species-extinction
Aol: http://www.aol.co.uk/news/2016/12/07/giraffes-in-danger-of-extinction-as-population-plunges-by-up-to/  

 

Former articles:

18 November 2016: Studies to reveal correlation between terrain, energy use, and giraffe locomotion
23 August 2016:
Research on locomotion of giraffes valuable for conservation of this species
9 March 2016:
Giraffe research broadcast on National Geographic channel
18 September 2015:
Researchers reach out across continents in giraffe research
29 May 2015:
Researchers international leaders in satellite tracking in the wildlife environment

 



We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept