Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021
Previous Archive
18 February 2019 | Story Leonie Bolleurs | Photo HO de Waal
Ground spiny Cactus pear
Shredded, sun-dried, and coarsely ground spiny cactus pear (Opuntia ficus-indica and O. engelmannii), ready to be included in balanced diets for ruminant livestock (cattle, sheep, goats) and wild antelopes.

Prof HO de Waal, researcher in the Department of Animal, Wildlife and Grassland Sciences at the University of the Free State (UFS), has developed a standard procedure for the processing of spiny cactus pear (Opuntia spp.) into livestock fodder. This will ultimately assist in the management of massive infestations of spiny cactus pear and help to convert underutilised farmland back to natural grazing land.

In addition to applying biological control agents, mechanical control is used to harvest alien spiny cactus pear, and the large volume of material is processed as livestock feed.

 

Introduced to South Africa

 

Three hundred years ago, seafarers visiting the Cape of Good Hope introduced the well-known invading alien spiny cactus pear to South Africa. These were later transported inland and by the 1950s about one million ha of South Africa had been invaded by the alien cacti.

Some regions in the Eastern Cape have been taken over by dense, impenetrable thickets of these cacti. Invasive alien plants (IAPs) such as cacti pose a direct threat to, among others, South Africa’s water security and productive use of land.

A range of methods is used to control IAPs, including mechanical, chemical, biological, and integrated control methods.

A control programme must include the three phases of initial control to drastically reduce the existing population; follow-up control of seedlings, root suckers, and coppice growth; and maintenance control on an annual basis to sustain low alien plant numbers.

 

Processing spiny cactus pears

 

According to Prof De Waal, the harvesting and processing of the spiny cactus pear is fairly simple. Although it requires a good measure of physical strength, perseverance, and the necessary protective clothing, the cacti can be processed by harvesting the plants; shredding the cladodes through a cladode cutter; then drying them in the sun, and lastly grinding it in a hammer mill. “The long spines are degraded mechanically by grinding the sun-dried cladode strips in a hammer mill before including it in balanced livestock diets,” said Prof De Waal.

Infestations will be opened, reclaimed, rehabilitated and the natural pastures (veld) allowed to revert back to grazing for livestock.

The National Resource Management Programme (NRM)P) will be approached for official support in clearing and rehabilitating massive areas of infestation by alien spiny cactus pear in the Eastern Cape. Such financial support will be an investment in reducing the infestation by invaders and the rehabilitation and sustainable use of natural resources in South Africa.

News Archive

Collaboration between UFS and Mayo Clinic to revolutionise cancer treatment
2014-06-27



Attending the lecture were, from the left: Dr Chantel Swart, Prof Lodewyk Kock, Prof Debabrata Mukhopadhyay, Prof James du Preez; back: Prof Pieter van Wyk.
Dr Swart, Profs Kock and Du Preez are from the Department of Microbial, Biochemical and Food Biotechnology. Prof Mukhopadhyay is from the Mayo Clinic (US) and Prof Van Wyk is from the Centre for Microscopy at the UFS.
Photo: Supplied
The UFS made a discovery that may have enormous implications for the treatment of diseases in humans.

Since the discovery, the UFS joined forces with the Mayo Clinic in Rochester, US, in the fight against cancer.

In this collective effort, UFS researchers would be able to assist the Mayo team to:
• see how treatment in cancer patients is progressing,
• target treatments more effectively,
• reduce dosages in order to make treatment gentler on the patient,
• track the effectiveness of the chemotherapy drugs used, and
• gain an accurate view of how the cancer is being eliminated.

Prof Lodewyk Kock, Outstanding Professor at the Department of Microbial, Biochemical and Food Biotechnology, and his team incidentally created a technique to use argon gas particles for the first time on biological material to slice open cells to look inside.

The team that supported Prof Kock includes Dr Chantel Swart, Khumisho Dithebe (PhD student), Prof Hendrik Swart (Department of Physics) and Prof Pieter van Wyk (Centre for Microscopy).

Prof Debabrata Mukhopadhyay from the Mayo Clinic in Rochester, US, got to hear about this breakthrough at the UFS and a collaboration between the two institutions was established.

During a visit to the Bloemfontein Campus, Prof Mukhopadhyay explained novel techniques that make use of gold nanoparticles. These particles attach to chemotherapeutic drugs to selectively target cancer cells – dramatically decreasing the side effects to normal human cells.

For these new drugs (coupled to gold nanoparticles) to be accepted into clinical practice, visual and chemical proof is needed, though. This is where the technique developed by the UFS will play a vital role.

With the technique to look inside cells, the composition, location and metabolism of these drugs can be determined. This will aid in a proof of concept for the application of the nano-drugs. Furthermore, it will enable approval for use of these drugs in clinical trials and eventually could revolutionise cancer treatment as a whole.

For video lectures on the technique used, as well as its findings, follow these links:

1. http://vimeo.com/63643628 (Comic version for school kids)

2. http://vimeo.com/61521401 (Detailed version for fellow scientists)

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept