Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021
Previous Archive
18 February 2019 | Story Leonie Bolleurs | Photo HO de Waal
Ground spiny Cactus pear
Shredded, sun-dried, and coarsely ground spiny cactus pear (Opuntia ficus-indica and O. engelmannii), ready to be included in balanced diets for ruminant livestock (cattle, sheep, goats) and wild antelopes.

Prof HO de Waal, researcher in the Department of Animal, Wildlife and Grassland Sciences at the University of the Free State (UFS), has developed a standard procedure for the processing of spiny cactus pear (Opuntia spp.) into livestock fodder. This will ultimately assist in the management of massive infestations of spiny cactus pear and help to convert underutilised farmland back to natural grazing land.

In addition to applying biological control agents, mechanical control is used to harvest alien spiny cactus pear, and the large volume of material is processed as livestock feed.

 

Introduced to South Africa

 

Three hundred years ago, seafarers visiting the Cape of Good Hope introduced the well-known invading alien spiny cactus pear to South Africa. These were later transported inland and by the 1950s about one million ha of South Africa had been invaded by the alien cacti.

Some regions in the Eastern Cape have been taken over by dense, impenetrable thickets of these cacti. Invasive alien plants (IAPs) such as cacti pose a direct threat to, among others, South Africa’s water security and productive use of land.

A range of methods is used to control IAPs, including mechanical, chemical, biological, and integrated control methods.

A control programme must include the three phases of initial control to drastically reduce the existing population; follow-up control of seedlings, root suckers, and coppice growth; and maintenance control on an annual basis to sustain low alien plant numbers.

 

Processing spiny cactus pears

 

According to Prof De Waal, the harvesting and processing of the spiny cactus pear is fairly simple. Although it requires a good measure of physical strength, perseverance, and the necessary protective clothing, the cacti can be processed by harvesting the plants; shredding the cladodes through a cladode cutter; then drying them in the sun, and lastly grinding it in a hammer mill. “The long spines are degraded mechanically by grinding the sun-dried cladode strips in a hammer mill before including it in balanced livestock diets,” said Prof De Waal.

Infestations will be opened, reclaimed, rehabilitated and the natural pastures (veld) allowed to revert back to grazing for livestock.

The National Resource Management Programme (NRM)P) will be approached for official support in clearing and rehabilitating massive areas of infestation by alien spiny cactus pear in the Eastern Cape. Such financial support will be an investment in reducing the infestation by invaders and the rehabilitation and sustainable use of natural resources in South Africa.

News Archive

Training in critical medical skills receives preference at the UFS
2015-07-24

The UFS bought a new simulator for surgeons to learn how to perform laparoscopic operations. During the launch of the simulator, Dr Mathys Labuschagne (left), Head of the Clinical Simulation and Skills Unit, illustrates to Prof Gert van Zyl, Dean of the faculty, how the simulator works.
Photo: Rene-Jean van der Berg

The Clinical Simulation and Skills Unit in the University of the Free State (UFS) Faculty of Health Sciences purchased a new laparoscopic simulator for R1.2 million recently. The simulator will be used to teach postgraduate medical students how to perform laparoscopic surgery. The UFS is currently the only university in the country, and one of only two institutions in South Africa, that own such a simulator.

The Lapsim simulator, from Surgical Science in Sweden, is a highly sophisticated computerised tool for the training and improvement of laparoscopic surgical skills in postgraduate students within the surgical disciplines.

“The purpose of a simulator is not to replace training on patients, but to help registrars in acquiring basic laparoscopic surgical skills,” says Dr Mathys Labuschagne, Head of the Clinical Simulation and Skills Unit.

These skills include depth perception, hand-eye-coordination, instrument handling, precision and speed, which are essential before operations can be performed on patients.

Prof Gert van Zyl, Dean of the Faculty of Health Sciences, says this simulator is very important for the UFS to train registrars more effectively in theatre work.

“Not only registrars will benefit from this, but qualified surgeons may also make use of it to improve their skills.”

The simulator is pre-programmed for different medical conditions that laparoscopic surgery is traditionally used for. Programmes can be selected for procedures such as sterilisation, cholecystectomy (gall bladder removal), endometriosis, etc. The simulator even makes it possible simply to practise eye-hand coordination, and to apply stitches internally.

Watch the short video explaining more about the Lapsim simulator.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept