Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021
Previous Archive
18 February 2019 | Story Leonie Bolleurs | Photo HO de Waal
Ground spiny Cactus pear
Shredded, sun-dried, and coarsely ground spiny cactus pear (Opuntia ficus-indica and O. engelmannii), ready to be included in balanced diets for ruminant livestock (cattle, sheep, goats) and wild antelopes.

Prof HO de Waal, researcher in the Department of Animal, Wildlife and Grassland Sciences at the University of the Free State (UFS), has developed a standard procedure for the processing of spiny cactus pear (Opuntia spp.) into livestock fodder. This will ultimately assist in the management of massive infestations of spiny cactus pear and help to convert underutilised farmland back to natural grazing land.

In addition to applying biological control agents, mechanical control is used to harvest alien spiny cactus pear, and the large volume of material is processed as livestock feed.

 

Introduced to South Africa

 

Three hundred years ago, seafarers visiting the Cape of Good Hope introduced the well-known invading alien spiny cactus pear to South Africa. These were later transported inland and by the 1950s about one million ha of South Africa had been invaded by the alien cacti.

Some regions in the Eastern Cape have been taken over by dense, impenetrable thickets of these cacti. Invasive alien plants (IAPs) such as cacti pose a direct threat to, among others, South Africa’s water security and productive use of land.

A range of methods is used to control IAPs, including mechanical, chemical, biological, and integrated control methods.

A control programme must include the three phases of initial control to drastically reduce the existing population; follow-up control of seedlings, root suckers, and coppice growth; and maintenance control on an annual basis to sustain low alien plant numbers.

 

Processing spiny cactus pears

 

According to Prof De Waal, the harvesting and processing of the spiny cactus pear is fairly simple. Although it requires a good measure of physical strength, perseverance, and the necessary protective clothing, the cacti can be processed by harvesting the plants; shredding the cladodes through a cladode cutter; then drying them in the sun, and lastly grinding it in a hammer mill. “The long spines are degraded mechanically by grinding the sun-dried cladode strips in a hammer mill before including it in balanced livestock diets,” said Prof De Waal.

Infestations will be opened, reclaimed, rehabilitated and the natural pastures (veld) allowed to revert back to grazing for livestock.

The National Resource Management Programme (NRM)P) will be approached for official support in clearing and rehabilitating massive areas of infestation by alien spiny cactus pear in the Eastern Cape. Such financial support will be an investment in reducing the infestation by invaders and the rehabilitation and sustainable use of natural resources in South Africa.

News Archive

Research eradicates bacteria from avocado facility
2017-01-17

 Description: Listeria monocytogenes Tags: Listeria monocytogenes

Listeria monocytogenes as seen under an electron
microscope. The photo was taken with a transmission
electron microscope at the microscopy unit of the UFS.
Bacteriophages (lollipop-like structures) can be seen
next to the bacterial cells.
Photo: Supplied

“The aim of my project was to identify and characterise the contamination problem in an avocado-processing facility and then to find a solution,” said Dr Amy Strydom, postdoctoral fellow in the Department of Microbial Biochemical and Food Biotechnology at the University of the Free State (UFS).

Her PhD, “Control of Listeria monocytogenes in an Avocado-processing Facility”, aimed to identify and characterise the contamination problem in a facility where avocados were processed into guacamole. Dr Strydom completed her MSc in food science in 2009 at Stellenbosch University and this was the catalyst for her starting her PhD in microbiology in 2012 at the UFS. The research was conducted over a period of four years and she graduated in 2016. The research project was funded by the National Research Foundation.

The opportunity to work closely with the food industry further motivated Dr Strydom to conduct her research. The research has made a significant contribution to a food producer (avocado facility) that will sell products that are not contaminated with any pathogens. The public will then buy food that is safe for human consumption.


What is Listeria monocytogenes?

Listeria monocytogenes is a food-borne pathogenic bacterium. When a food product is contaminated with L. monocytogenes, it will not be altered in ways that are obvious to the consumer, such as taste and smell. When ingested, however, it can cause a wide range of illnesses in people with impaired immune systems. “Risk groups include newborn babies, the elderly, and people suffering from diseases that weaken their immune systems,” Dr Strydom said. The processing adjustments based on her findings resulted in decreased numbers of Listeria in the facility.

The bacteria can also survive and grow at refrigeration temperatures, making them dangerous food pathogens, organisms which can cause illnesses [in humans]. Dr Strydom worked closely with the facility and developed an in-house monitoring system by means of which the facility could test their products and the processing environment. She also evaluated bacteriophages as a biological control agent in the processing facility. Bacteriophages are viruses that can only infect specific strains of bacteria. Despite bacteriophage products specifically intended for the use of controlling L. monocytogenes being commercially available in the food industry, Dr Strydom found that only 26% of the L. monocytogenes population in the facility was destroyed by the ListexP100TM product. “I concluded that the genetic diversity of the bacteria in the facility was too high and that the bacteriophages could not be used as a control measure. However, there is much we do not understand about bacteriophages, and with a few adjustments, we might be able to use them in the food industry.”

Microbiological and molecular characterisation of L. monocytogenes

The bacteria were isolated and purified using basic microbiological culturing. Characterisation was done based on specific genes present in the bacterial genome. “I amplified these genes with polymerase chain reaction (PCR), using various primers targeting these specific genes,” Dr Strydom said. Some amplification results were analysed with a subsequent restriction digestion where the genes were cut in specific areas with enzymes to create fragments. The lengths of these fragments can be used to differentiate between strains. “I also compared the whole genomes of some of the bacterial strains.” The bacteriophages were then isolated from waste water samples at the facility using the isolated bacterial strains. “However, I was not able to isolate a bacteriophage that could infect the bacteria in the facility.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept