Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021
Previous Archive
29 July 2019 | Story Leonie Bolleurs
Dr Martin Clark
Dr Martin Clark, the founder of the MAGIC (Multi-purpose Aerial Geological Image Classification) initiative. MAGIC can obtain geological and structural information that is critical for making informed decisions in exploration and mineral extraction processes.

Mining has historically been described as a boom-and-bust industry, where fluctuations in mineral prices could result in extreme success or bankruptcy. Successful mining companies closely monitor assets/expenditures, risks, and other parameters associated with their business to best ensure their longevity. In most mineral industries, there are a few competitors that dominate the delivery of a mineral resource. As a result, technological development, along with other factors, are critical to ensure that these companies’ business remains viable and protected.

This is according to post-doctoral fellow in the Department of Geology, Dr Martin Clark.

Drone technology: better, faster, safer

He says technological development in mining generally translates to how a company can extract a resource from the ground better, faster, and safer. 

Dr Clark believes the rapid development of drone technology represents a shift in the toolbox that mining companies can employ.

“Drones can collect a great deal of data randomly over vast or small areas within hours, historically accomplished by mapping campaigns which can last months to years. Drones can also collect data in areas which are difficult and dangerous for humans to get to. These include cliff faces or rock walls that are difficult and dangerous to get close to, as well as stretches of land where dense vegetation, inaccessible terrain, and even atmospheric dangers become factors which reduce or modify the scope of exploration work,” he said. 

Expanding application of drones

Dr Clark’s work specifically focuses on expanding the applications for which drones are used. “I assess what and how good the imaging capabilities of drones are, use the imagery to generate 3-D models to drive scientific observation, and yield results which can help companies to extract resources. This initiative is called MAGIC (Multi-purpose Aerial Geological Image Classification),” he said. 



“MAGIC aims to collect geological and structural information that is critical for making informed decisions in exploration and mineral extraction processes,” he added.

Dr Clark is not only the founder of MAGIC; he also drives multiple aspects of the initiative including education, research, and business development. 

In 2013, when he was busy with his doctorate, there was already a spark of interest in using drones to address geological questions. At that time, Dr Clark was working with remotely sensed high-resolution LiDAR imagery to better understand geological structures at the Sudbury Mining Camp in Canada. The interest became a reality in 2018, when he applied this initiative during his post-doctoral fellowship at the UFS.

Now and the future

“At present, there are no direct mining projects underway, but projects are expected to begin in 2020. Drone operation and image-analysis techniques are currently being refined for industry,” he said. 

Besides his work with drones, Dr Clark also work in the fields of structural geology, remote sensing, and geospatial data analysis.  

News Archive

New Genetics building on Bloemfontein Campus spirals into new frontiers
2015-09-11

On Thursday 3 September 2015, the Department of Genetics hosted the official opening of its new offices on the Bloemfontein Campus of the University of the Free State (UFS).

Prof Jonathan Jansen, Vice-Chancellor and Rector of the UFS, Prof Neil Heideman, Dean of the Faculty of Natural and Agricultural Sciences, and Prof Paul Grobler, Head of the Department of Genetics cut the ribbon, symbolising the opening of this building with its state-of-the-art facilities.

The new genetics building boasts a new administration block with a reception area, seven offices, a small committee room, and a seminar room for 50 people. Furthermore, the undergraduate laboratory block provides a laboratory for 150 students. The research block has facilities for 30 researchers.

This building also hosts a chemical waste sorting and storage facility. This is a first for the university.

Several sites were investigated for the new building, but due to its size and envisaged second phase, a “green fields” site was found on the western side of the campus. The main entrance caters for visitors from the north, students on foot, and those using the parking area in front of the library. The secondary south entrance is for those who use the dedicated parking area south of the building. The link between these two entrances is the spine of the building, a helix with services/buildings spaced on either side. The helix will be extended in the second phase to keep the circulation and linkage of buildings as simple as possible.

In his opening speech, Prof Grobler gave a breakdown of the history of the Department of Genetics. Today, this department, which opened its doors at the UFS in 1960, is proud of its 131 students and 46 honours students.

According to Major-General Edward Ngokha, Head of the Forensic Science Laboratory, students who graduate from the UFS in the field of genetics make excellent employees. The Forensic Science Laboratory has employed 25 honours students since the BSc Honours degree in Genetics was implemented in 2010.

“The UFS delivers education of high quality and high standards. Thank you for your contribution toward fighting crime by delivering well-prepared, committed employees,” said Major-General Ngokha.

The department presents programmes on population conservation genetics, plant molecular genetics, cytogenetics, forensic genetics, forensic science, human genetics, and behavioural genetics.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept