Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021
Previous Archive
29 July 2019 | Story Leonie Bolleurs
Dr Martin Clark
Dr Martin Clark, the founder of the MAGIC (Multi-purpose Aerial Geological Image Classification) initiative. MAGIC can obtain geological and structural information that is critical for making informed decisions in exploration and mineral extraction processes.

Mining has historically been described as a boom-and-bust industry, where fluctuations in mineral prices could result in extreme success or bankruptcy. Successful mining companies closely monitor assets/expenditures, risks, and other parameters associated with their business to best ensure their longevity. In most mineral industries, there are a few competitors that dominate the delivery of a mineral resource. As a result, technological development, along with other factors, are critical to ensure that these companies’ business remains viable and protected.

This is according to post-doctoral fellow in the Department of Geology, Dr Martin Clark.

Drone technology: better, faster, safer

He says technological development in mining generally translates to how a company can extract a resource from the ground better, faster, and safer. 

Dr Clark believes the rapid development of drone technology represents a shift in the toolbox that mining companies can employ.

“Drones can collect a great deal of data randomly over vast or small areas within hours, historically accomplished by mapping campaigns which can last months to years. Drones can also collect data in areas which are difficult and dangerous for humans to get to. These include cliff faces or rock walls that are difficult and dangerous to get close to, as well as stretches of land where dense vegetation, inaccessible terrain, and even atmospheric dangers become factors which reduce or modify the scope of exploration work,” he said. 

Expanding application of drones

Dr Clark’s work specifically focuses on expanding the applications for which drones are used. “I assess what and how good the imaging capabilities of drones are, use the imagery to generate 3-D models to drive scientific observation, and yield results which can help companies to extract resources. This initiative is called MAGIC (Multi-purpose Aerial Geological Image Classification),” he said. 



“MAGIC aims to collect geological and structural information that is critical for making informed decisions in exploration and mineral extraction processes,” he added.

Dr Clark is not only the founder of MAGIC; he also drives multiple aspects of the initiative including education, research, and business development. 

In 2013, when he was busy with his doctorate, there was already a spark of interest in using drones to address geological questions. At that time, Dr Clark was working with remotely sensed high-resolution LiDAR imagery to better understand geological structures at the Sudbury Mining Camp in Canada. The interest became a reality in 2018, when he applied this initiative during his post-doctoral fellowship at the UFS.

Now and the future

“At present, there are no direct mining projects underway, but projects are expected to begin in 2020. Drone operation and image-analysis techniques are currently being refined for industry,” he said. 

Besides his work with drones, Dr Clark also work in the fields of structural geology, remote sensing, and geospatial data analysis.  

News Archive

Pianoboost a hit on Google Play Store
2017-03-01

Description: Pianoboost Tags: Pianoboost

Pianoboost is an interactive app developed by
Dr Frelet de Villiers, lecturer in the Odeion School of Music
at the University of the Free State.
Photo: Supplied

“I got the idea after watching my children play Sing Star on PlayStation, where the game can detect how accurately you sing. I realised this could turn my dream into a reality if I looking into the possibility of an app that can do note recognising,” says Dr Frelet de Villiers, developer of the Pianoboost app, about her brainchild.

Dr De Villiers, lecturer in the Odeion School of Music (OSM) at the University of the Free State (UFS), developed this interactive app for piano learners to learn music. She started the developing process three years ago, but the project only got momentum when she  approached LivX, a digital developing company in Pretoria, six months ago.

Useful for other instruments
Pianoboost has been live since 9 February 2017 and already received positive reviews, with a five-star rating on the Google Play Store. “In my experience as piano teacher, I know that learners struggle to learn their notes. They can’t recognise the note on the music sheet and therefore cannot play it on the piano,” says Dr De Villiers. Although this app is developed for piano, it is also successfully used for other instruments like the marimba, violin, and guitar, because it can pick up sounds from almost any instrument.

Ideal for use in academic programme
There are students in the certificate and diploma modules at the OSM who haven’t received any formal music training. Therefore, the app is ideal for them to use. “We have instrument-specific methodology in our degree courses. So, those students could also be exposed to the app for use in their own teaching of young learners,” says Dr De Villiers.

Different features sets app apart
The app, available on Android devices, has instant music recognition and impressive features that already sets it apart from existing learning apps. It is used on a real acoustical piano (you do not need to plug the tablet into a keyboard), has instant note recognition, shows the correct position of the note on the piano when you are wrong, and works like a flash card system, to name a few. “By using the app, you also learn the names of notes whether you played it right or wrong,” says Dr De Villiers.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept