Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021
Previous Archive
05 June 2019 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Lucas Erasmus and Prof Hendrik Swart
Lucas Erasmus and Prof Hendrik Swart (right) are working on a joint project with Ghent University to find an attractive solution to address the energy demands of buildings, electric motor vehicles, and mobile electronics.

With a constant increase in the price of electricity, any innovation to replace this necessity in our daily lives is welcome. 

The University of the Free State (UFS), whose vision is supported by an element of innovation, welcomes the recent agreement between its Department of Physics and Ghent University.

Attractive solution


Not only will this research – which aims to develop the materials necessary for transparent solar panels – enlarge the international research footprint of the UFS, but it is also an attractive solution to address the energy demands of buildings, electric motor vehicles, and mobile electronics without affecting their appearance.

According to Prof Hendrik Swart, from the UFS Department of Physics, the agreement between the two universities entails a joint doctoral degree in which both universities will supervise the project and the awarding of the doctorate. The student, Lucas Erasmus, will conduct research at both institutions.

Transparent solar panel

The idea with the research is to develop glass that is transparent to visible light, just like the glass you find in the windows of buildings, motor vehicles, and mobile electronic devices. However, by incorporating the right phosphor materials inside the glass, the light from the sun that is invisible to the human eye (ultraviolet and infrared light) can be collected, converted, and concentrated to the sides of the glass panel where solar panels can be mounted. This invisible light can then be used to generate electricity to power these buildings, vehicles, and electronic devices. The invention is therefore a type of transparent solar panel.

Implemented in cellphone screens

This technology can be implemented in the building environment to meet the energy demands of the people inside the buildings. 

The technology is also good news for the 4,7 billion cellphone users in the world, as it can be implemented in the screens of cellphones, where the sun or the ambient light of a room can be used to power the device without affecting its appearance. 

Another possible application is in electric cars, where the windows can be used to help power the vehicle.

Low-income housing

Erasmus added: “We are also looking at implementing this idea into hard, durable plastics that can act as a replacement for zinc roofs.” 

“This will allow visible light to enter housing, and the invisible light can then be used to generate electricity. The device also concentrates the light from a large area to the small area on the sides where the solar panels are placed; therefore, reducing the number of solar panels needed and, in return, reducing the cost.”

The technology will take about a decade to implement.

“This study is currently ongoing, and we are experimenting and testing different materials in order to optimise the device in the laboratory. After this, it needs to be upscaled in order to test it in the field. It is truly the technology of the future,” said Erasmus.

Video: Barend Nagel

News Archive

#Women'sMonth: Save the children
2017-08-10

Description: Trudi O'Neill Tags: : rotaviruses, young children, Dr Trudi O’Neill, Department of Microbial, Biochemical and Food Biotechnology, vaccine 

Dr Trudi O’Neill, Senior lecturer in the Department of
Microbial, Biochemical and Food Biotechnology.
Photo: Anja Aucamp

Dr Trudi O’Neill, Senior lecturer in the Department of Microbial, Biochemical and Food Biotechnology, is conducting research on rotavirus vaccines.

Dr O’Neill was inspired to conduct research on this issue through her fascination with the virus. “The biology of rotaviruses, especially the genome structure and the virus’ interaction with the host, is fascinating.”

“In fact, it is estimated that, globally, ALL children will be infected with rotavirus before the age of five, irrespective of their socio-economic standing. However, infants and young children in poor countries are more vulnerable due to inadequate healthcare. The WHO estimates that approximately 215 000 deaths occur each year. This roughly equates to eight Airbus A380 planes, the largest commercial carrier with a capacity of approximately 500 seats, filled with only children under the age of five, crashing each week of every year.”

Alternative to expensive medicines 
“Currently, there are two vaccines that have been licensed for global use. However, these vaccines are expensive and poor countries, where the need is the greatest, are struggling to introduce them sustainably. It is therefore appealing to study rotaviruses, as it is scientifically challenging, but could at the same time have an impact on child health,” Dr O’Neill said.

The main focus of Dr O’Neill’s research is to develop a more affordable vaccine that can promote child vaccination in countries/areas that cannot afford the current vaccines.

All about a different approach 

When asked about the most profound finding of her research, Dr O’Neill responded: “It is not so much a finding, but rather the approach. My rotavirus research group is making use of yeast as vehicle to produce a sub-unit vaccine. These microbes are attractive, as they are relatively easy to manipulate and cheap to cultivate. Downstream production costs can therefore be reduced. The system we use was developed by my colleagues, Profs Koos Albertyn and Martie Smit, and allows for the potential use of any yeast. This enables us to screen a vast number of yeasts in order to identify the best yeast producer.”

Vaccination recently acquired a bad name in the media for its adverse side effects. As researcher, Dr O’Neill has this to say: “Vaccines save lives. By vaccinating your child, you don’t just protect your own child from a potentially deadly infection, but also other children in your community that might be too young to be vaccinated or have pre-existing health problems that prevents vaccination.” 

A future without rotavirus vaccination?

Dr O’Neill believes a future without rotavirus vaccination will be a major step backwards, as the impact of rotavirus vaccines has been profound. “Studies in Mexico and Malawi actually show a reduction in deaths. A colleague in Mozambique has commented on the empty hospital beds that amazed both clinicians and scientists only one year after the introduction of the vaccine in that country. Although many parents, mostly in developed countries, don’t have to fear dehydrating diarrhoea and potential hospitalisation of their babies due to rotavirus infection anymore, such an infection could still be a death sentence in countries that have not been able to introduce the vaccine in their national vaccination programmes,” she said. 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept